Skip to main content
Log in

Regulation of apoptosis by peptides of fibronectin in human monocytes

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Synthetic peptides with sequences present in extracellular matrix protein fibronectin have been described to stimulate human monocytes. We describe now that one of these peptides, FN6, induces apoptotic effects on monocytes and we investigate the molecular mechanisms involved in the regulation of this response. Incubation of monocytes with FN6 induces the activation of the small GTPase Rac. In turn, Rac mediates the increase of both JNK and p38 activities in a sustained fashion, as well as the phosphorylation levels of their respective substrates c-Jun and ATF-2. FN6 also stimulates caspases -9 and -3 and the delayed proteolysis of its substrates PARP and D4-GDI. In addition, initiator caspases -1 and -5 were activated by FN6 treatment of monocytes but, in contrast to that observed for caspases-9 and -3, this effect was not dependent on JNK or p38 activities. These kinases also mediated the increase of Bax levels, but only in some conditions Bcl-2 depletion caused by the peptide. Moreover, whereas initially only caspase-1 is involved in caspase-3 activation, later on caspase-9 seems also to participate. Therefore, we demonstrate that FN6 stimulation allows multiple, JNK and p38 -dependent and -independent interacting signals to regulate the apoptotic response in human monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borkakoti N. Matrix metalloproteases: variations on a theme. Prog Biophys Mol Biol 1998; 870: 73–94.

    Google Scholar 

  2. Welgus HG, Campbell EJ, Cury JD et al. Neutral metalloproteinases produced by human mononuclear phagocytes: enzyme profile, regulation, and expression during cellular development. J Clin Invest 1990; 86: 1496–1502.

    CAS  PubMed  Google Scholar 

  3. Lacraz S, Isler P, Vey E, Welgus HG, Dayer JM. Direct contact between T lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J Biol Chem 1994; 269: 22027–22033.

    CAS  PubMed  Google Scholar 

  4. Dayer JM, Beutler B, Cerami A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med 1985; 162: 2163–2168.

    Article  CAS  PubMed  Google Scholar 

  5. Yla-Herttuala S, Lipton BA, Rosenfeld ME et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 1991; 88: 5252–5256.

    CAS  PubMed  Google Scholar 

  6. Antoniades HN, Neville-Golden J, Galanopoulos T, Kradin RL, Valente AJ, Graves DT. Expression of monocyte chemoattractant protein 1 mRNA in human idiopathic pulmonary fribosis. Proc Natl Acad Sci USA 1992; 89: 5371–5375.

    CAS  PubMed  Google Scholar 

  7. Saren P, Welgus HG, Kovanen PT. TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 1996; 157: 4159–4165.

    CAS  PubMed  Google Scholar 

  8. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Curr. Opin Cell Biol 2001; 13: 534–540.

    CAS  Google Scholar 

  9. Beezhold DH, Personius C. Fibronectin fragments stimulate tumor necrosis factor secretion by human monocytes. J Leukoc Biol 1992; 51: 59–64.

    CAS  PubMed  Google Scholar 

  10. Van der Flier A, Sonnenberg A. Functions and interactions of integrins. Cell Tissue Res 2001; 305: 285–298.

    PubMed  Google Scholar 

  11. Potts JR, Campbell ID. Fibronectin structure and assembly. Curr Opin Cell Biol 1994; 6: 648–655.

    Article  CAS  PubMed  Google Scholar 

  12. García-Gila M, López-Martín EM, García-Pardo A. Adhesion to fibronectin via α4 integrin (CD49d) protects B cells from apoptosis induced by serum deprivation but not via IgM or Fas/Apo-1 receptors. Clin Exp Immunol 2002; 127: 455– 462.

    PubMed  Google Scholar 

  13. Pulai JI, Del Carlo M Jr, Loeser RF. The alpha5beta1integrin provides matrix signals for normal and osteoarthritic human articular chondrocytes in vitro. Arthritis Rheum 2002; 46: 1528–1535.

    Article  CAS  PubMed  Google Scholar 

  14. Kapila YL, Wang S, Jhonson PW. Mutations in the heparin binding domain of fibronectin in cooperation with the V region induce decreases in p125 FAK levels plus proteoglycan-mediated apoptosis via caspases. J Biol Chem 1999; 274: 30906–30913.

    Article  CAS  PubMed  Google Scholar 

  15. Buckley CD, Pilling D, Henriquez NV, Parsonage G, Threlfall K, Scheel-Toellner D, Simmons DL, Akbar AN, Lord JM, Salmon M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 1999; 397: 534–539.

    CAS  PubMed  Google Scholar 

  16. López-Moratalla N, Calonge MM, López-Zabalza MJ, Pérez-Mediavilla LA, Subirá ML, Santiago E. Activation of human lymphomononuclear cells by peptides derived from extracellular matrix proteins. Biochim Biophys Acta 1995; 1265: 181–188.

    PubMed  Google Scholar 

  17. Pérez-Mediavilla LA, López-Zabalza MJ, Calonge MM, Montuenga L, López-Moratalla N, Santiago E. Inducible nitric oxide synthase in human lymphomononuclear cells activated by synthetic peptides derived from extracellular matrix proteins. FEBS Lett 1995; 357: 121–124.

    PubMed  Google Scholar 

  18. Osés-Prieto JA, López-Moratalla N, Santiago E, Jaffrézou JP, López-Zabalza MJ. Molecular mechanisms of apoptosis induced by an immunomodulating peptide on human monocytes. Arch Biochem Biophys 2000; 379: 353–362.

    PubMed  Google Scholar 

  19. Merrifield RB, Stewart JM. Automated peptide synthesis. Nature 1965; 207: 522–352.

    CAS  PubMed  Google Scholar 

  20. Atherton E, Logan JC, Sheppard CR. Procedures for solid phase synthesis using N-fluorenil metoxicarbonyl amino acids on polyamide supports, synthesis of substance P and of acyl carrier protein 65–74 decapeptide. J Chem Soc Perkin Trans 1981; 1: 538–546.

    Google Scholar 

  21. Boyum A. Isolation of mononuclear cells and granulocytes from human blood, isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1g. Scand J Clin Lab Invest 1968;97: 77–89.

    CAS  Google Scholar 

  22. Schreiber E, Matthias P, Muller MM, Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acid Res 1989; 17: 6419.

    CAS  PubMed  Google Scholar 

  23. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994; 367: 40–46.

    Article  CAS  PubMed  Google Scholar 

  24. Golstein P, Ojcius DM, Young JD. Cell death mechanisms and the immune system. Immunol Rev 1991; 121: 29–65.

    CAS  PubMed  Google Scholar 

  25. Ida H, Anderson P. Activation-induced NK cell death triggered by CD2 stimulation. Eur J Immunol 1998; 28: 1292–1300.

    CAS  PubMed  Google Scholar 

  26. Ortaldo JR, Mason AT, O'Shea JJ. Receptor-induced death in human natural killer cells: involvement of CD16. J Exp Med 1995; 181: 339–344.

    Article  CAS  PubMed  Google Scholar 

  27. Thibeault A, Zekki H, Mourad W, Charron D, Al-Daccak R. Triggering HLA-DR molecules on human peripheral monocytes induces their death. Cell Immunol 1999; 192: 79–85.

    Article  CAS  PubMed  Google Scholar 

  28. Williams MA Withington S, Newland AC, Kelsey SM. Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo. J Infect Dis 1998; 178: 1421–1433.

    Article  CAS  PubMed  Google Scholar 

  29. López-Zabalza MJ, Martínez-Lausín S, Bengoechea-Alonso MT, López-Moratalla N, González A, Santiago E. Signaling pathway triggered by a short immunomodulating peptide on human monocytes. Arch Biochem Biophys 1997; 338: 136–142.

    Article  PubMed  Google Scholar 

  30. Bengoechea-Alonso MT, Pelacho B, Osés-Prieto JA, Santiago E, López-Moratalla N, López-Zabalza MJ. Regulation of NF-kappaB activation by protein phosphatase 2B and NO, via protein kinase A activity, in human monocytes. Nitric Oxide 2003; 8: 65–74.

    PubMed  Google Scholar 

  31. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal 2001; 13: 85–94.

    Article  CAS  PubMed  Google Scholar 

  32. Taylor BS, de Vera ME, Ganster RW, et al. Multiple NF-κB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem 1998; 273: 15148–15156.

    CAS  PubMed  Google Scholar 

  33. Srivastava S, Weitzmann MN, Cenci S, Ross FP, Adler S, Pacifici R. Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD. J Clin Invest 1999; 104: 503–513.

    CAS  PubMed  Google Scholar 

  34. Pérez RL, Ritzenthaler JD, Roman J. Transcriptional regulation of the interleukin-1beta promoter via fibrinogen engagement of the CD18 integrin receptor. Am J Respir Cell Mol Biol 1999; 20: 1059–1066.

    PubMed  Google Scholar 

  35. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 1997; 385: 169–172.

    Article  CAS  PubMed  Google Scholar 

  36. Bagrodia S, Derijard B, Davis RJ, Cerione RA. Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 1995;270: 27995–27998.

    CAS  PubMed  Google Scholar 

  37. Werlen G, Jacinto E, Xia Y, Karin M. Calcineurin preferentially synergizes with PKC-theta to activate JNK and IL-2 promoter in T lymphocytes. EMBO J 1998; 17: 3101–3111.

    Article  CAS  PubMed  Google Scholar 

  38. Mackay DJ, Hall A, Rho GTPases. J Biol Chem 1998;273: 20685–20688.

    CAS  PubMed  Google Scholar 

  39. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 2002; 277: 21119–21122.

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Manji GA, Grenier JM et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 2002; 277: 29874–29880.

    CAS  PubMed  Google Scholar 

  41. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417–426.

    Article  CAS  PubMed  Google Scholar 

  42. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 2004; 117: 561–574.

    Article  CAS  PubMed  Google Scholar 

  43. Hacker G. The morphology of apoptosis. Cell Tissue Res. 2000; 301: 5–17.

    CAS  PubMed  Google Scholar 

  44. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555–556.

    Article  CAS  PubMed  Google Scholar 

  45. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997; 16: 6914–6925.

    CAS  PubMed  Google Scholar 

  46. Tamatani M, Che YH, Matsuzaki H et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 1999; 274: 8531–8538.

    Article  CAS  PubMed  Google Scholar 

  47. Slee EA, Harte MT, Kluck RM et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner.J Cell Biol 1999; 144: 281–292.

    Article  CAS  PubMed  Google Scholar 

  48. Krieser RJ, Eastman A. Cleavage and nuclear translocation of the caspase 3 substrate Rho GDP-dissociation inhibitor, D4-GDI, during apoptosis. Cell Death Differ 1999; 6: 412–419.

    Article  CAS  PubMed  Google Scholar 

  49. Duriez PJ, Shah GM. Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 1997; 75: 337–349.

    Article  CAS  PubMed  Google Scholar 

  50. Alvárez-Gonzalez R, Spring H, Muller M, Burkle A. Selective loss of poly(ADP-ribose) and the 85-kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylation-induced apoptosis of HeLa cells. J Biol Chem 1999; 274: 32122–32126.

    PubMed  Google Scholar 

  51. Cheng EH, Kirsch DG, Clem RJ et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997; 278: 1966–1968.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou X, Gordon SA, Kim YM et al. Nitric oxide induces thymocyte apoptosis via a caspase-1-dependent mechanism.J Immunol 2000; 165: 1252–1258.

    CAS  PubMed  Google Scholar 

  53. Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 2001; 276: 28309–28313.

    CAS  PubMed  Google Scholar 

  54. Rowe SJ, Allen L, Ridger VC, Hellewell PG, Whyte MK. Caspase-1-deficient mice have delayed neutrophil apoptosis and a prolonged inflammatory response to lipopolysaccharide-induced acute lung injury. J Immunol 2002; 169: 6401–6407.

    CAS  PubMed  Google Scholar 

  55. Razmara M, Srinivasula SM, Wang L et al. CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J Biol Chem 2002; 277: 13952–13958.

    Article  CAS  PubMed  Google Scholar 

  56. Levkau B, Scatena M, Giachelli CM, Ross R, Raines EW. Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-kappa B loop. Nat Cell Biol 1999; 1: 227–233.

    Article  CAS  PubMed  Google Scholar 

  57. Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003; 10: 76–100.

    Article  CAS  PubMed  Google Scholar 

  58. Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21: 326–329.

    CAS  PubMed  Google Scholar 

  59. Fan M, Goodwin ME, Birrer MJ, Chambers TC. The c-Jun NH(2)-terminal protein kinase/AP-1 pathway is required for efficient apoptosis induced by vinblastine. Cancer Res 2001; 61: 4450–4458.

    CAS  PubMed  Google Scholar 

  60. Cardone MH, Salvesen GS, Widmann C, Johnson G, Frisch SM. The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 1997; 90: 315–323.

    Article  CAS  PubMed  Google Scholar 

  61. Gibson S, Widmann C, Johnson GL. Differential involvement of MEK kinase 1 (MEKK1) in the induction of apoptosis in response to microtubule-targeted drugs versus DNA damaging agents. J Biol Chem 1999; 274: 10916–10922.

    CAS  PubMed  Google Scholar 

  62. Maundrell K, Antonsson B, Magnenat E, et al. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 1997; 272: 25238–25242.

    Article  CAS  PubMed  Google Scholar 

  63. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 2000; 20: 1886–1896.

    Article  CAS  PubMed  Google Scholar 

  64. Roulston A, Reinhard C, Amiri P, Williams LT. Early of c-Jun N-terminal kinase and p38 kinase regulate cellsurvival inresponse to tumor necrosis factor alpha. J Biol Chem 1998; 273: 10232–10239.

    Article  CAS  PubMed  Google Scholar 

  65. Guo YL, Baysal K, Kang B, Yang LJ, Williamson JR. Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells. J Biol Chem 1998; 273: 4027–4034.

    CAS  PubMed  Google Scholar 

  66. Nagata Y, Todokoro K. Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood 1999; 94: 853–863.

    CAS  PubMed  Google Scholar 

  67. Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 2000; 7: 1182–1191.

    Article  CAS  PubMed  Google Scholar 

  68. Li P, Nijhawan D, Budihardjo I, Srinivasula SM et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  CAS  PubMed  Google Scholar 

  69. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 1997; 91: 439–442.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. López-Zabalza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natal, C., Osés-Prieto, J.A., Pelacho, B. et al. Regulation of apoptosis by peptides of fibronectin in human monocytes. Apoptosis 11, 209–219 (2006). https://doi.org/10.1007/s10495-006-3761-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-3761-y

Keywords

Navigation