Skip to main content
Log in

Persistent inhibition of FLIPL expression by lentiviral small hairpin RNA delivery restores death-receptor-induced apoptosis in neuroblastoma cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Neuroblastoma represents the most common and deadly solid tumour of childhood, which disparate biological and clinical behaviour can be explained by differential regulation of apoptosis. To understand mechanisms underlying death resistance in neuroblastoma cells, we developed small hairpin of RNA produced by lentiviral vectors as tools to selectively interfere with FLIPL, a major negative regulator of death receptor-induced apoptosis. Such tools revealed highly efficient in interfering with FLIPL expression and function as they almost completely repressed endogenous and/or exogenously overexpressed FLIPL protein and fully reversed FLIPL-mediated TRAIL resistance. Moreover, interference with endogenous FLIPL and FLIPS significantly restored FasL sensitivity in SH-EP neuroblastoma cell line. These results reveal the ability of lentivirus-mediated shRNAs to specifically and persistently interfere with FLIP expression and support involvement of FLIP in the regulation of death receptor-mediated apoptosis in neuroblastoma cells. Combining such tools with other therapeutic modalities may improve treatment of resistant tumours such as neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NB::

neuroblastoma

DR::

death-receptor

FLIP::

FLICE-inhibitory protein

DISC::

death-inducing signalling complex

TRAIL::

tumour necrosis factor-related apoptosis-inducing ligand

References

  1. Maris JM, Matthay KK. Molecular biology of neuroblastoma. J Clin Oncol 1999; 17: 2264–2279.

    CAS  PubMed  Google Scholar 

  2. Brodeur GM. Neuroblastoma: Biological insights into a clinical enigma. Nat Rev Cancer 2003; 3: 203–216.

    Article  CAS  PubMed  Google Scholar 

  3. Brodeur GM, Fong CT. Molecular biology and genetics of human neuroblastoma. Cancer Genet Cytogenet 1989; 41: 153–174.

    Article  CAS  PubMed  Google Scholar 

  4. Igney FH, Krammer PH. Death and anti-death: Tumour resistance to apoptosis. Nat Rev Cancer 2002; 2: 277–288.

    Article  CAS  PubMed  Google Scholar 

  5. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N. Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 2000; 60: 4315–4319.

    CAS  PubMed  Google Scholar 

  6. Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6: 529–535.

    CAS  PubMed  Google Scholar 

  7. Eggert A, Grotzer MA, Zuzak TJ, et al. Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 2001; 61: 1314–1319.

    CAS  PubMed  Google Scholar 

  8. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP [see comments]. Nature 1997; 388: 190–195.

    CAS  PubMed  Google Scholar 

  9. Martin DA, Siegel RM, Zheng L, Lenardo MJ. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 1998; 273: 4345–4349.

    CAS  PubMed  Google Scholar 

  10. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem. 1998; 273: 2926–2930.

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998; 1: 319–325.

    CAS  PubMed  Google Scholar 

  12. Wajant H. Targeting the FLICE Inhibitory Protein (FLIP) in cancer therapy. Mol Interv 2003; 3: 124–127.

    Article  CAS  PubMed  Google Scholar 

  13. Fulda S, Meyer E, Debatin KM. Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1- converting enzyme inhibitory protein expression. Cancer Res 2000; 60: 3947–3956.

    CAS  PubMed  Google Scholar 

  14. Siegmund D, Hadwiger P, Pfizenmaier K, Vornlocher HP, Wajant H. Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis. Mol Med 2002; 8: 725–732.

    CAS  PubMed  Google Scholar 

  15. Lane D, Cartier A, L'Esperance S, Cote M, Rancourt C, Piche A. Differential induction of apoptosis by tumor necrosis factor-related apoptosis-inducing ligand in human ovarian carcinoma cells. Gynecol Oncol 2004; 93: 594–604.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Jin TG, Yang H, DeWolf WC, Khosravi-Far R, Olumi AF. Persistent c-FLIP(L) expression is necessary and sufficient to maintain resistance to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in prostate cancer. Cancer Res 2004; 64: 7086–7091.

    CAS  PubMed  Google Scholar 

  17. Rippo MR, Moretti S, Vescovi S, et al. FLIP overexpression inhibits death receptor-induced apoptosis in malignant mesothelial cells. Oncogene 2004; 23: 7753–7760.

    Article  CAS  PubMed  Google Scholar 

  18. Dutton A, O'Neil JD, Milner AE, et al. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin's lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci USA 2004; 101: 6611–6616.

    Article  CAS  PubMed  Google Scholar 

  19. Poulaki V, Mitsiades N, Romero ME, Tsokos M. Fas-mediated apoptosis in neuroblastoma requires mitochondrial activation and is inhibited by FLICE inhibitor protein and Bcl-2. Cancer Res 2001; 61: 4864–4872.

    CAS  PubMed  Google Scholar 

  20. Abedini MR, Qiu Q, Yan X, Tsang BK. Possible role of FLICE-like inhibitory protein (FLIP) in chemoresistant ovarian cancer cells in vitro. Oncogene 2004; 23: 6997–7004.

    Article  CAS  PubMed  Google Scholar 

  21. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  22. Micheau O, Thome M, Schneider P, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277: 45162–45171.

    Article  CAS  PubMed  Google Scholar 

  23. Pear WS, Miller JP, Xu L, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  24. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  25. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 2003; 34: 263–264.

    Article  CAS  PubMed  Google Scholar 

  26. Soneoka Y, Cannon PM, Ramsdale EE, et al. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 1995; 23: 628–633.

    CAS  PubMed  Google Scholar 

  27. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    CAS  PubMed  Google Scholar 

  28. Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004; 10: 12–18.

    Article  CAS  PubMed  Google Scholar 

  29. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 5: 834–839.

    Article  CAS  PubMed  Google Scholar 

  30. Muhlethaler-Mottet A, Bourloud KB, Auderset K, Joseph JM, Gross N. Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-complemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl-x(L) and RIP. Oncogene 2004.

  31. Gratas C, Tohma Y, Barnas C, Taniere P, Hainaut P, Ohgaki H. Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. Cancer Res 1998; 58: 2057–2062.

    CAS  PubMed  Google Scholar 

  32. Ozoren N, El Deiry WS. Cell surface death receptor signaling in normal and cancer cells. Seminars in Cancer Biology 2003; 13: 135–147.

    Article  PubMed  Google Scholar 

  33. Hahne M, Rimoldi D, Schroter M, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996; 274: 1363–1366.

    Article  CAS  PubMed  Google Scholar 

  34. Gronbaek K, Straten PT, Ralfkiaer E, et al. Somatic Fas mutations in non-Hodgkin's lymphoma: Association with extranodal disease and autoimmunity. Blood 1998; 92: 3018–3024.

    CAS  PubMed  Google Scholar 

  35. Park WS, Oh RR, Kim YS, et al. Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer. J Pathol 2001; 193: 162–168.

    CAS  PubMed  Google Scholar 

  36. Thome M, Schneider P, Hofmann K, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997; 386: 517–521.

    Article  CAS  PubMed  Google Scholar 

  37. Reed JC, Meister L, Tanaka S, et al. Differential expression of bcl2 protooncogene in neuroblastoma and other human tumor cell lines of neural origin. Cancer Res 1991; 51: 6529–6538.

    CAS  PubMed  Google Scholar 

  38. Brambilla E, Negoescu A, Gazzeri S, et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 1996; 149: 1941–1952.

    CAS  PubMed  Google Scholar 

  39. Dole MG, Jasty R, Cooper MJ, Thompson CB, Nunez G, Castle VP. Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 1995; 55: 2576–2582.

    CAS  PubMed  Google Scholar 

  40. Altieri DC. Survivin and apoptosis control. Adv Cancer Res 2003; 88: 31–52.

    CAS  PubMed  Google Scholar 

  41. Kasof GM, Gomes BC. Livin, a novel inhibitor-of-apoptosis (IAP) family member. J Biol Chem 2000.

  42. Crnkovic-Mertens I, Hoppe-Seyler F, Butz K. Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene. Oncogene 2003; 22: 8330–8336.

    Article  CAS  PubMed  Google Scholar 

  43. Chang DW, Xing Z, Pan Y, et al. c-FLIP(sL) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002; 21: 3704–3714.

    CAS  PubMed  Google Scholar 

  44. Sharp DA, Lawrence DA, Ashkenazi A. Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem 2005; 280: 19401–19409.

    Article  CAS  PubMed  Google Scholar 

  45. Schneiderman D, Kim JM, Senterman M, Tsang BK. Sustained suppression of Fas ligand expression in cisplatin-resistant human ovarian surface epithelial cancer cells. Apoptosis 1999; 4: 271–281.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flahaut, M., Mühlethaler-Mottet, A., Auderset, K. et al. Persistent inhibition of FLIPL expression by lentiviral small hairpin RNA delivery restores death-receptor-induced apoptosis in neuroblastoma cells. Apoptosis 11, 255–263 (2006). https://doi.org/10.1007/s10495-006-3435-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-3435-9

Keywords

Navigation