Skip to main content
Log in

Etoposide (VP-16) sensitizes p53-deficient human non-small cell lung cancer cells to caspase-7-mediated apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Human non-small-cell-lung-cancer (NSCLC) cells of p 53-null genotype were exposed to low-dosage topoisomearse II inhibitor etoposide (VP-16). The cellular proliferation rate could be effectively inhibited by VP-16 in dose-dependent manner. The effective drug concentration for growth inhibition could be as low as 0.5 μ M and the apoptotic phenotype became evident 48 h later. In H1299 cells, VP-16-induced cytotoxic effect was demonstrated associated with apoptosis that disappeared when restored with wild-type p53. Cell cycle analysis revealed that, upon VP-16 induction, cell death began with growth arrest by accumulating cells at the G2-M phase. The cells at sub-G1 phase increased at the expense of those at G2-M transition state. To assess the regulation of cell cycle modulators, western blot analysis of H1299 cell lysates showed the release of apoptosis initiator, cytochrome c and apaf-1 hours following drug induction. The cleavage of downstream effectors, procaspase-9 and procaspase-7, but not procaspase-3, was accompanied with proteolysis of poly-(ADP-ribose) polymerase (PARP). VP-16-activated procaspase-7 cleavage was abrogated in cells with ectopically expressed p53.On the other hand, the inhibited procaspase-7 fragmentation by caspase-specific inhibitor reversed apoptotic phenotype caused by drug induction. Thus, VP-16-induced apoptotic cell death was contributed by caspase-7 activation in p 53-deficient human NSCLC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen AY, Liu LF. DNA topoisomerases: Essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 1994; 34: 191–218.

    Article  CAS  PubMed  Google Scholar 

  2. Berger JM, Gamblin SJ, Harrison SC, et al. Structure and mechanism of DNA topoisomerase II. Nature 1996; 379: 225–232.

    Article  CAS  PubMed  Google Scholar 

  3. Froelich-Ammon SJ, Osheroff N. Topoisomerase poisons: Harnessing the dark side of enzyme mechanism. J Biol Chem 1995; 270: 21429–21432.

    Article  CAS  PubMed  Google Scholar 

  4. Dubrez L, Goldwasser F, Genne P, et al. The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia 1995; 9: 1013–1024.

    CAS  PubMed  Google Scholar 

  5. Lee YJ, Shacter E. Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem 1999; 274: 19792–19798.

    Article  CAS  PubMed  Google Scholar 

  6. Soues S, Wiltshire M, Smith PJ. Differential sensitivity to etoposide (VP-16)-induced S phase delay in a panel of small-cell lung carcinoma cell lines with G1/S phase checkpoint dysfunction. Cancer Chemother Pharmacol 2001; 47: 133–140.

    Article  CAS  PubMed  Google Scholar 

  7. Hande KR. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur J Cancer 1998; 34: 1514–1521.

    Article  CAS  PubMed  Google Scholar 

  8. Wu GS, El-Diery WS. p53 and chemosensitivity. Nat Med 1996; 2: 255–256.

    Article  CAS  Google Scholar 

  9. Lai SL, Perng RP, Hwang J. p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci 2000; 7: 64–70.

    Article  CAS  PubMed  Google Scholar 

  10. McNeish IA, Bell SJ, Lemoine NR. Gene therapy progress and prospects: Cancer gene therapy using tumour suppressor genes. Gene Ther 2004; 11: 497–503.

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi T, Nau MM, Chiba I, et al. p53: A frequent target for genetic abnormalities in lung cancer. Science 1989; 246: 491–494.

    CAS  PubMed  Google Scholar 

  12. Rosl F. A simple and rapid method for detection of apoptosis in human cells. Nucleic Acids Res 1992; 20: 5243.

    CAS  PubMed  Google Scholar 

  13. Budihardjo I, Oliver H, Lutter M. et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15: 269–290.

    CAS  PubMed  Google Scholar 

  14. Schreiber V, Hunting D, Trucco C. et al. A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Natl Acad Sci U S A 1995; 92: 4753– 4757.

    CAS  PubMed  Google Scholar 

  15. Wang Y, Blandino G, Givol D. Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 1999; 18: 2643–2649.

    Article  CAS  PubMed  Google Scholar 

  16. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999; 144: 281–292.

    CAS  PubMed  Google Scholar 

  17. Houghton JA. Apoptosis and drug response. Curr Opin Oncol 1999; 11: 475–481.

    Article  CAS  PubMed  Google Scholar 

  18. Hickman JA. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 1992; 11: 121–139.

    Article  CAS  PubMed  Google Scholar 

  19. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821–1828.

    CAS  PubMed  Google Scholar 

  20. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    CAS  PubMed  Google Scholar 

  21. Weinert T. A DNA damage checkpoint meets the cell cycle engine. Science 1997; 277: 1450–1451.

    Article  CAS  PubMed  Google Scholar 

  22. Darzynkiewicz Z, Li X, Gong J. Assays of cell viability: Discrimination of cells dying by apoptosis. Methods Cell Biol 1994; 41: 15–38.

    CAS  PubMed  Google Scholar 

  23. Wyllie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    CAS  PubMed  Google Scholar 

  24. Cayrol C, Knibiehler M, Ducommun B. p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene 1998; 16: 311–320.

    Article  CAS  PubMed  Google Scholar 

  25. Niculescu AB, 3rd Chen X, Smeets M, et al. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18: 629–643.

    CAS  PubMed  Google Scholar 

  26. Dulic V, Stein GH, Far DF, et al. Nuclear accumulation of p21Cip1 at the onset of mitosis: A role at the G2/M-phase transition. Mol Cell Biol 1998; 18: 546–557.

    CAS  PubMed  Google Scholar 

  27. Han Z, Wei W, Dunaway S, et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 2002; 277: 17154–17160.

    Article  CAS  PubMed  Google Scholar 

  28. Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res 2003; 63: 2705–2715.

    CAS  PubMed  Google Scholar 

  29. Sugrue MM, Shin DY, Lee SW, et al. Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci U S A 1997; 94: 9648–9653.

    Article  CAS  PubMed  Google Scholar 

  30. Bhatia K, Pommier Y, Giri C, et al. Expression of the poly(ADP-ribose) polymerase gene following natural and induced DNA strand breakage and effect of hyperexpression on DNA repair. Carcinogenesis 1990; 11: 123–128.

    CAS  PubMed  Google Scholar 

  31. Bursztajn S, Feng JJ, Berman SA, et al. Poly (ADP-ribose) polymerase induction is an early signal of apoptosis in human neuroblastoma. Brain Res Mol Brain Res 2000; 76: 363–376.

    Article  CAS  PubMed  Google Scholar 

  32. Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 2001; 276: 7320–7326.

    Article  CAS  PubMed  Google Scholar 

  33. Mesner PW, Jr, Budihardjo II, Kaufmann SH. Chemotherapy-induced apoptosis. Adv Pharmacol 1997; 41: 461–499.

    CAS  PubMed  Google Scholar 

  34. Reed JC. Mechanisms of apoptosis. Am J Pathol 2000; 157: 1415–1430.

    CAS  PubMed  Google Scholar 

  35. Zheng TS, Hunot S, Kuida K, et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 2000; 6: 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  36. Perkins CL, Fang G, Kim CN, et al. The role of Apaf-1, caspase-9, and bid proteins in etoposide- or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res 2000; 60: 1645–1653.

    CAS  PubMed  Google Scholar 

  37. Janicke RU, Engels IH, Dunkern T, et al. Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells. Oncogene 2001; 20: 5043–5053.

    Article  CAS  PubMed  Google Scholar 

  38. Marcelli M, Cunningham GR, Walkup M, et al. Signaling pathway activated during apoptosis of the prostate cancer cell line LNCaP: Overexpression of caspase-7 as a new gene therapy strategy for prostate cancer. Cancer Res 1999; 59: 382–390.

    CAS  PubMed  Google Scholar 

  39. Mc Gee MM, Hyland E, Campiani G, et al. Caspase-3 is not essential for DNA fragmentation in MCF-7 cells during apoptosis induced by the pyrrolo-1,5-benzoxazepine, PBOX-6. FEBS Lett 2002; 515: 66–70.

    Article  CAS  PubMed  Google Scholar 

  40. Germain M, Affar EB, D’Amours D, et al. Cleavage of automodified poly(ADP–ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem 1999; 274: 28379–28384.

    Article  CAS  PubMed  Google Scholar 

  41. Essmann F, Engels IH, Totzke G, et al. Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event. Cancer Res 2004; 64: 7065–7072.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, CC., Lin, CH.M.Y. & Fang, K. Etoposide (VP-16) sensitizes p53-deficient human non-small cell lung cancer cells to caspase-7-mediated apoptosis. Apoptosis 10, 643–650 (2005). https://doi.org/10.1007/s10495-005-1898-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-1898-8

Keywords

Navigation