Skip to main content
Log in

Cisplatin-mediated c-myc overexpression and cytochrome c (cyt c) release result in the up-regulation of the death receptors DR4 and DR5 and the activation of caspase 3 and caspase 9, likely responsible for the TRAIL-sensitizing effect of cisplatin

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) reverses multidrug resistance (MDR) and induces apoptosis in MDR gastric carcinoma cells. In our previous study, cisplatin proved to be a sensitizing agent for TRAIL. To study the synergistic effects of cisplatin and TRAIL, we investigated the mechanism by which TRAIL reverses multidrug resistance, the role of c-myc in modulating the death receptors DR4 and DR5 and the relationship between cisplatin and cytochrome c (cyt c) release in SGC7901/VCR and SGC7901/DDP cells. We found that after treatment with TRAIL, the DNA-PKcs/Akt/GSK-3β pathway, which is positively correlated with the levels of MDR1 and MRP1, was significantly inhibited and that this tendency can be abolished by Z-DEVD-FMK (a specific caspase 3 inhibitor). We also found that suppression of c-myc by siRNA reduced the expression of DR4 and DR5 and that transfection with a pAVV-c-myc expression vector increased the expression of DR4 and DR5. Moreover, cisplatin increased the expression of c-myc in the presence of TRAIL, and there is a clear increase in cyt c release from mitochondria with the increasing concentrations of cisplatin. Meanwhile, the intrinsic death receptor pathway of caspase 9, as well as the common intrinsic and extrinsic downstream target, caspase 3, was potently activated by the release of cyt c. Together, we conclude that in TRAIL-treated MDR gastric carcinoma cells, cisplatin induces the death receptors DR4 and DR5 through the up-regulation of c-myc and strengthens the activation of caspases via promoting the release of cyt c. These effects would then be responsible for the TRAIL sensitization effect of cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang L. Incidence and mortality of gastric cancer in China. World J Gastroenterol. 2006;12:17–20.

    PubMed Central  PubMed  Google Scholar 

  2. Anderson WF, Camargo MC, Fraumeni JJ, Correa P, Rosenberg PS, Rabkin CS. Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA. 2010;303:1723–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  4. Yu PF, Guo JM, Xu Q, Ying JE, Wang XJ, Cheng XD, Wang XB, Yu CD. Significance of multidrug resistance gene-associated proteins in the postoperative adjuvant chemotherapy for gastric carcinoma and the prognosis. Zhonghua Wei Chang Wai Ke Za Zhi. 2010;13:289–93.

    PubMed  Google Scholar 

  5. Kim DY, Kim MJ, Kim HB, Lee JW, Bae JH, Kim DW, Kang CD, Kim SH. Suppression of multidrug resistance by treatment with TRAIL in human ovarian and breast cancer cells with high level of c-Myc. Biochim Biophys Acta. 2011;1812:796–805.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang KG, Qin CY, Wang HQ, Wang JX, Wang QM. The effect of TRAIL on the expression of multidrug resistant genes MDR1, LRP and GST-pi in drug-resistant gastric cancer cell SGC7901/VCR. Hepatogastroenterology. 2012;59:2672–6.

    Article  CAS  PubMed  Google Scholar 

  7. Shao SL, Cui TT, Zhao W, Zhang WW, Xie ZL, Wang CH, Jia HS, Liu Q. RNAi-based knockdown of multidrug resistance-associated protein 1 is sufficient to reverse multidrug resistance of human lung cells. Asian Pac J Cancer Prev. 2014;15:10597–601.

    Article  PubMed  Google Scholar 

  8. Seo SB, Hur JG, Kim MJ, Lee JW, Kim HB, Bae JH, Kim DW, Kang CD, Kim SH. TRAIL sensitize MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/GSK-3beta pathway and activation of caspases. Mol Cancer. 2010;9:199.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Walker AI, Hunt T, Jackson RJ, Anderson CW. Double-stranded DNA induces the phosphorylation of several proteins including the 90 000 mol. wt. heat-shock protein in animal cell extracts. EMBO J. 1985;4:139–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006;79:173–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lirdprapamongkol K, Sakurai H, Abdelhamed S, Yokoyama S, Athikomkulchai S, Viriyaroj A, Awale S, Ruchirawat S, Svasti J, Saiki I. Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int J Oncol. 2013;43:329–37.

    CAS  PubMed  Google Scholar 

  12. Wang S. The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene. 2008;27:6207–15.

    Article  CAS  PubMed  Google Scholar 

  13. Shen Y, White E. p53-dependent apoptosis pathways. Adv Cancer Res. 2001;82:55–84.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001;8:705–11.

    Article  CAS  PubMed  Google Scholar 

  15. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405–13.

    Article  CAS  PubMed  Google Scholar 

  17. Cui YF, Yu LS, Wang HQ, Gou YW, Wang QM, Zhang KG. Effect of TRAIL in combination with DDP on the expression of MDR1 gene in gastric cancer cells. Prz Gastroenterol. 2014;9:214–9.

    PubMed Central  PubMed  Google Scholar 

  18. Gatti L, Cossa G, Tinelli S, Carenini N, Arrighetti N, Pennati M, Cominetti D, De Cesare M, Zunino F, Zaffaroni N, Perego P. Improved apoptotic cell death in drug-resistant non-small-cell lung cancer cells by tumor necrosis factor-related apoptosis-inducing ligand-based treatment. J Pharmacol Exp Ther. 2014;348:360–71.

    Article  CAS  PubMed  Google Scholar 

  19. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94:15–21.

    Article  CAS  PubMed  Google Scholar 

  20. Trock BJ, Leonessa F, Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst. 1997;89:917–31.

    Article  CAS  PubMed  Google Scholar 

  21. Norgaard JM, Bukh A, Langkjer ST, Clausen N, Palshof T, Hokland P. MDR1 gene expression and drug resistance of AML cells. Br J Haematol. 1998;100:534–40.

    Article  CAS  PubMed  Google Scholar 

  22. Steinbach D, Legrand O. ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra? Leukemia. 2007;21:1172–6.

    Article  CAS  PubMed  Google Scholar 

  23. Ivy SP, Olshefski RS. Correlation of P-glycoprotein expression and function in childhood acute leukemia: a children’s cancer group study. Blood. 1996;88:309–18.

    CAS  PubMed  Google Scholar 

  24. Rivera-Calzada A, Maman JD, Spagnolo L, Pearl LH, Llorca O. Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Structure. 2005;13:243–55.

    Article  CAS  PubMed  Google Scholar 

  25. Cook AJ, Oganesian L, Harumal P, Basten A, Brink R, Jolly CJ. Reduced switching in SCID B cells is associated with altered somatic mutation of recombined S regions. J Immunol. 2003;171:6556–64.

    Article  CAS  PubMed  Google Scholar 

  26. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434:605–11.

    Article  CAS  PubMed  Google Scholar 

  27. Sun JF, Sui JL, Zhou PK, Geng Y, Hu YC, Cao ZS, Ge SL, Lou TZ, Wu DC. Decreased efficiency of gamma-ray-induced DNA double-strand break rejoining in malignant transformants of human bronchial epithelial cells generated by alpha-particle exposure. Int J Radiat Biol. 2002;78:773–80.

    Article  CAS  PubMed  Google Scholar 

  28. Ochiai M, Ubagai T, Kawamori T, Imai H, Sugimura T, Nakagama H. High susceptibility of Scid mice to colon carcinogenesis induced by azoxymethane indicates a possible caretaker role for DNA-dependent protein kinase. Carcinogenesis. 2001;22:1551–5.

    Article  CAS  PubMed  Google Scholar 

  29. Mandal M, Adam L, Kumar R. Redistribution of activated caspase-3 to the nucleus during butyric acid-induced apoptosis. Biochem Biophys Res Commun. 1999;260:775–80.

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Choi PS, Casey SC, Dill DL, Felsher DW. MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell. 2014;26:262–72.

    Article  CAS  PubMed  Google Scholar 

  31. Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, Morelli MJ, Bora P, Doni M, Verrecchia A, Tonelli C, Faga G, Bianchi V, Ronchi A, Low D, Muller H, Guccione E, Campaner S, Amati B. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 2014;511:488–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ehninger A, Boch T, Uckelmann H, Essers MA, Mudder K, Sleckman BP, Trumpp A. Posttranscriptional regulation of c-Myc expression in adult murine HSCs during homeostasis and interferon-alpha-induced stress response. Blood. 2014;123:3909–13.

    Article  CAS  PubMed  Google Scholar 

  33. Blanc E, Goldschneider D, Ferrandis E, Barrois M, Le Roux G, Leonce S, Douc-Rasy S, Benard J, Raguenez G. MYCN enhances P-gp/MDR1 gene expression in the human metastatic neuroblastoma IGR-N-91 model. Am J Pathol. 2003;163:321–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Labisso WL, Wirth M, Stojanovic N, Stauber RH, Schnieke A, Schmid RM, Kramer OH, Saur D, Schneider G. MYC directs transcription of MCL1 and eIF4E genes to control sensitivity of gastric cancer cells toward HDAC inhibitors. Cell Cycle. 2012;11:1593–602.

    Article  CAS  PubMed  Google Scholar 

  35. Henson ES, Gibson EM, Villanueva J, Bristow NA, Haney N, Gibson SB. Increased expression of Mcl-1 is responsible for the blockage of TRAIL-induced apoptosis mediated by EGF/ErbB1 signaling pathway. J Cell Biochem. 2003;89:1177–92.

    Article  CAS  PubMed  Google Scholar 

  36. Clohessy JG, Zhuang J, de Boer J, Gil-Gomez G, Brady HJ. Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J Biol Chem. 2006;281:5750–9.

    Article  CAS  PubMed  Google Scholar 

  37. Sun JG, Li H, Li X, Zeng X, Wu P, Fung KP, Liu FY. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo. Apoptosis. 2014;19:871–82.

    Article  CAS  PubMed  Google Scholar 

  38. Nakazato T, Sagawa M, Kizaki M. Triptolide induces apoptotic cell death of multiple myeloma cells via transcriptional repression of Mcl-1. Int J Oncol. 2014;44:1131–8.

    CAS  PubMed  Google Scholar 

  39. Chen KF, Chen HL, Liu CY, Tai WT, Ichikawa K, Chen PJ, Cheng AL. Dovitinib sensitizes hepatocellular carcinoma cells to TRAIL and tigatuzumab, a novel anti-DR5 antibody, through SHP-1-dependent inhibition of STAT3. Biochem Pharmacol. 2012;83:769–77.

    Article  CAS  PubMed  Google Scholar 

  40. Abdulghani J, Allen JE, Dicker DT, Liu YY, Goldenberg D, Smith CD, Humphreys R, El-Deiry WS. Sorafenib sensitizes solid tumors to Apo2L/TRAIL and Apo2L/TRAIL receptor agonist antibodies by the Jak2-Stat3-Mcl1 axis. PLoS One. 2013;8:e75414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Science Foundation of Anhui Province, Grant Number 1308085MH167.

Conflict of interest

None.

Ethical standards

Our research not involving Human Participants or Animals, so we do not need informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiguang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhang, K., Wang, Q. et al. Cisplatin-mediated c-myc overexpression and cytochrome c (cyt c) release result in the up-regulation of the death receptors DR4 and DR5 and the activation of caspase 3 and caspase 9, likely responsible for the TRAIL-sensitizing effect of cisplatin. Med Oncol 32, 133 (2015). https://doi.org/10.1007/s12032-015-0588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0588-9

Keywords

Navigation