Skip to main content
Log in

Direct- and Large Eddy Simulations of Turbulent Flow in CS0 Diffuser on Resolved and Under-resolved Meshes

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A Direct Numerical and Large Eddy Simulation study is conducted to establish the NASA CS0 diffuser as a test case for scale-resolving simulation methods and to evaluate the ability of such simulations to accurately predict flows with adverse pressure gradients and shallow separation from a smooth surface. The results of fine grid studies are in a good agreement with experimental data and substantially supplement them. These data are used as a basis for testing of LES on reduced grids, using different combinations of wall treatments and turbulence model formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

References

  • Bachalo, W.D., Johnson, D.A.: Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model. AIAA J. (1986). https://doi.org/10.2514/3.9286

    Article  Google Scholar 

  • Bose, S.T., Moin, P.: A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26, 015104 (2014)

    Article  Google Scholar 

  • Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24, 011702 (2012). https://doi.org/10.1063/1.3676783

    Article  Google Scholar 

  • Coleman, G.N., Garbaruk, A., Spalart, P.R.: Direct numerical simulation, theories and modelling of wall turbulence with a range of pressure gradients. Flow Turbul. Combust. 95(2), 261–276 (2015)

    Article  Google Scholar 

  • Disotell, K.J., Rumsey, C.L.: Development of an axisymmetric after body test case for turbulent flow separation validation, p. 34. Publication NASA/TM-2017-219680. NASA Langely Research Center, Hampton, VA, USA (2017)

  • Driver, D.: Reynolds shear stress measurements in a separated boundary layer flow. In: 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference. Presented at the 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference. American Institute of Aeronautics and Astronautics, Honolulu, HI, USA (1991). https://doi.org/10.2514/6.1991-1787

  • Dudek, J., Georgiadis, N., Yoder, D.: Calculation of turbulent subsonic diffuser flows using the NPARC Navier–Stokes code. In: 34th Aerospace Sciences Meeting and Exhibit. Presented at the 34th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Reno, NV, USA (1996). https://doi.org/10.2514/6.1996-497

  • Eggles, J.G.M., Unger, F., Westerweel, J., Adrian, R.J., Friedrich, R., Nieuwstadt, F.T.M.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–210 (1994)

    Article  Google Scholar 

  • ANSYS Fluent Manual: Release 16.0. ANSYS Inc., Canonsburg (2016)

    Google Scholar 

  • Ghate, A.S., Kenway, G.K., Stich, G.D., Maldonado, D., Jiris, C.C.: A wall-modeled LES perspective for the high lift common research model using LAVA. In: AIAA Paper 2022-3434, AIAA AVIATION 2022 Forum, Special Session: HLPW-4/GMGW-3: Workshop Results II (2022). https://doi.org/10.2514/6.2022-3434

  • Goc, K., Lehmkuhl, O., Park, G., Bose, S., Moin, P.: Large eddy simulation of aircraft at affordable cost: a milestone in computational fluid dynamics. Flow 1, E14 (2021). https://doi.org/10.1017/flo.2021.17

    Article  Google Scholar 

  • Greenblatt, D., Paschal, K.B., Yao, C.S., Harris, J.: A separation control CFD validation test case part 2. Zero efflux oscillatory blowing. In: AIAA-2005-0485 (2005)

  • Jasak, H., Weller, H.G., Gosman, A.D.: High resolution NVD Differencing Scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids 31, 431–449 (1999)

    Article  MATH  Google Scholar 

  • Johan, L., Soshi, K., Julien, B., Ivan, B.-M.: Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Eng. Rev. 3(1), 15-00418–15-00418 (2016). https://doi.org/10.1299/mer.15-00418

    Article  Google Scholar 

  • Kader, B.A.: Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transf. 24, 1541–1544 (1981). https://doi.org/10.1016/0017-9310(81)90220-9

    Article  Google Scholar 

  • Kolmogorov, D.K., Menter, F., Garbaruk, A.V.: On mesh requirements for large eddy simulation with wall functions. J. Phys.: Conf. Ser. 2103(1), 012212 (2021)

    Google Scholar 

  • Lozano-Duran, A., Bose, S.T., Moin, P.: Prediction of trailing edge separation on the NASA juncture flow using wall-modeled LES. In: AIAA Scitech 2020 Forum. Presented at the AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics, Orlando, FL (2020). https://doi.org/10.2514/6.2020-1776

  • Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  • Menter, F.: Stress-blended eddy simulation (SBES)—a new paradigm in hybrid RANS-LES modeling. In: Hoarau, Y., Peng, S.H., Schwamborn, D., Revell, A. (eds.) Progress in Hybrid RANS-LES Modelling. HRLM 2016. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 137. Springer, Cham (2018)

    Google Scholar 

  • Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999). https://doi.org/10.1023/A:1009995426001

    Article  MATH  Google Scholar 

  • Park, G.I.: Wall-modeled large-eddy simulation of a high Reynolds number separating and reattaching flow. AIAA J. 55, 3709–3721 (2017). https://doi.org/10.2514/1.J055745

    Article  Google Scholar 

  • Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983). https://doi.org/10.2514/3.8284

    Article  MATH  Google Scholar 

  • Rogers, S.E., Kwak, D.: An upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations. AIAA J. 28(2), 253–262 (1990). https://doi.org/10.2514/3.10382

    Article  MATH  Google Scholar 

  • Rumsey, C.L.: NASA Langley Turbulence Modeling Resource. http://turbmodels.larc.nasa.gov/

  • Seifert, A., Pack, L.G.: Active flow separation control on wall-mounted hump at high Reynolds numbers. AIAA J. 40, 1363–1372 (2002)

    Article  Google Scholar 

  • Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001

    Article  Google Scholar 

  • Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combust. 93, 63–92 (2014). https://doi.org/10.1007/s10494-014-9534-8

    Article  Google Scholar 

  • Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Direct numerical simulation of the two-dimensional speed bump flow at increasing Reynolds numbers. Int. J. Heat Fluid Flow 90, 108840 (2021). https://doi.org/10.1016/j.ijheatfluidflow.2021.108840

    Article  Google Scholar 

  • Shur, M., Strelets, M., Travin, A.: A high-order implicit multi-block Navier–Stokes code: ten-year experience of application to RANS/DES/LES/DNS of turbulence. In: 7th Symposium on Overset Grids and Solution Technology, pp. 5–7 (2004)

  • Simmons, D.J., Thomas, F.O., Corke, T., Hussain, F.: Experimental characterization of smooth body flow separation topography and topology on a two-dimensional geometry of finite span. J. Fluid Mech. 944, A42 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.K.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret. Comput. Fluid Dyn. 20(3), 181–195 (2006). https://doi.org/10.1007/s00162-006-0015-0

    Article  MATH  Google Scholar 

  • Spalart, P.R., Belyaev, K.V., Garbaruk, A.V., Shur, M.L., Strelets, M.K., Travin, A.K.: Large-eddy and direct numerical simulations of the Bachalo–Johnson flow with shock-induced separation. Flow Turbul. Combust. 99(3), 865–885 (2017)

    Article  Google Scholar 

  • Spalart, P.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Proceedings of First AFOSR International Conference on DNS/LES. Greyden Press (1997)

  • Stabnikov, A.S., Kolmogorov, D.K., Garbaruk, A.V., Menter, F.R.: Direct numerical simulation of separated turbulent flow in axisymmetric diffuser. J. Phys.: Conf. Ser. 2103(1), 012214 (2021)

    Google Scholar 

  • Temmerman, L., Leschziner, M.A., Mellen, C.P., Fröhlich, J.: Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Int. J. Heat Fluid Flow 24, 157–180 (2003). https://doi.org/10.1016/S0142-727X(02)00222-9

    Article  Google Scholar 

  • Wilhelm, S., Jacob, J., Sagaut, P.: A new explicit algebraic wall model for LES of turbulent flows under adverse pressure gradient. Flow Turbul. Combust. 106, 1–35 (2021). https://doi.org/10.1007/s10494-020-00181-7

    Article  Google Scholar 

Download references

Acknowledgements

All the computations were conducted with the use of the cluster Tornado of the Computer Center “Polytechnichesky”.

Funding

Russian authors’ research was funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-311 of Apr. 20, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian R. Menter.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Algebraic Wall-Modeled LES Formulation

The model is similar to the algebraic WMLES formulation given in Shur et al. (2008), but differs in some details, by not using the strain rate S of the Smagorinsky model in the LES part, but a formulation using the difference between the strain rate and the vorticity rate \(\Omega\). This change avoids the known deficiency of the Smagorinsky model to produce non-zero eddy-viscosity in constant shear regions. The model formulation is:

$$ \nu_{t} = f_{sw} \nu_{t,RANS} + \left( {1 - f_{sw} } \right)\nu_{t,LES} $$
(7)
$$ f_{sw} = e^{{ - \left( {\frac{{C_{w1} d_{w} }}{{h_{max} }}} \right)^{{C_{w2} }} }} $$
(8)
$$ \nu_{t,LES} = l_{LES}^{2} \left| {S - \Omega } \right|, \nu_{t,RANS} = l_{RANS}^{2} S $$
(9)

With coefficients \(C_{w1} = 2,{ }C_{w2} = 3\). In this formulation, \(d_{w}\) is the wall distance, \(h_{max}\) is the maximum edge length of the cell, \(S\) is the strain rate and \(\Omega\) is the vorticity rate.

The length scales are defined as:

$$ l_{RANS} = 0.41d_{w} \sqrt {f_{wd} } $$
$$ f_{wd} = 1 - e^{{ - \left( {\frac{{l^{ + } }}{25}} \right)^{3} }} $$
$$ l^{ + } = \frac{{\sqrt {\left( {\nu + \nu_{t} } \right)S} d_{w} }}{\nu } $$
(10)
$$ l_{LES} = C_{smag} \Delta $$
$$ \Delta = min\left( {C_{w} max\left( {d_{w} ,h_{max} } \right),h_{max} } \right) $$
(11)

with coefficients \(C_{smag} = 0.2, C_{w} = 0.15\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menter, F.R., Kolmogorov, D.K., Garbaruk, A.V. et al. Direct- and Large Eddy Simulations of Turbulent Flow in CS0 Diffuser on Resolved and Under-resolved Meshes. Flow Turbulence Combust 110, 515–546 (2023). https://doi.org/10.1007/s10494-023-00399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-023-00399-1

Keywords

Navigation