Skip to main content
Log in

Simulation of methane/air non-premixed turbulent flames based on REDIM simplified chemistry

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Combustion simulations involve the modeling of chemical kinetics, and due to the complexity of detailed mechanisms, chemistry reduction techniques are necessary. One model reduction strategy is the reaction-diffusion manifold (REDIM) method, and to obtain the REDIM, an evolution equation must be solved till its stationary solution and a gradient estimation is needed, provided e.g. from flamelet solutions with detailed chemistry. In this work, the REDIM technique is applied to simulate methane/air turbulent flames based on a simplified gradient estimation. This strategy uses less information in constructing the REDIM, increasing computational efficiency while reducing computational costs. Validation is performed for non-premixed laminar flames. A RANS/transported-PDF framework for the simulation of turbulent reacting flows is presented and used to validate the proposed model. Results show that the simplified gradient estimation is enough to simulate turbulent flames at moderate Reynolds number, which demonstrates the suitability of REDIM as reduced kinetic model in reactive flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vervisch, L.: Numerical modeling of nonpremixed turbulent combustion. Institut National des Sciences Appliquees de Rouen (1999)

  2. Kuo, K., Acharya, R.: Fundamentals of Turbulent and Multi-Phase Combustion. Wiley, New York (2012)

    Book  Google Scholar 

  3. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Pope, S.: Turbulent Flows. IOP Publishing, Bristol (2001)

    MATH  Google Scholar 

  5. Warnatz, J., Maas, U., Dibble, R.: Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. Inc, RT Edwards (2011)

    Google Scholar 

  7. Echekki, T., Mastorakos, E.: Turbulent Combustion Modeling: Advances, New Trends and Perspectives, vol. 95. Springer, Berlin (2010)

    MATH  Google Scholar 

  8. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Spalding, D.: Mixing and chemical reaction in steady confined turbulent flames. In: Symposium (International) on Combustion, vol. 13, pp 649–657. Elsevier (1971)

  10. Pope, S.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)

    Article  Google Scholar 

  11. Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36(2), 168–259 (2010)

    Article  Google Scholar 

  12. Turányi, T., Tomlin, A.S.: Analysis of kinetic reaction mechanisms. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  13. Lu, T., Law, C.K.: On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146(3), 472–483 (2006)

    Article  Google Scholar 

  14. Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)

    Article  Google Scholar 

  15. Pepiot-Desjardins, P., Pitsch, H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1), 67–81 (2008)

    Article  MATH  Google Scholar 

  16. Bodenstein, M.: Eine theorie der photochemischen reaktionsgeschwindigkeiten. Zeitschrift für Physikalische Chemie 85(1), 329–397 (1913)

    MATH  Google Scholar 

  17. Maas, U., Pope, S.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3), 239–264 (1992)

    Article  Google Scholar 

  18. Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)

    Article  Google Scholar 

  19. Lam, S.: Using CSP to understand complex chemical kinetics. Combust. Sci. Technol. 89(5-6), 375–404 (1993)

    Article  Google Scholar 

  20. Williams, F.: Recent advances in theoretical descriptions of turbulent diffusion flames. In: Turbulent Mixing in Nonreactive and Reactive Flows, pp 189–208. Springer (1975)

  21. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)

    Article  Google Scholar 

  23. Goussis, D.A., Maas, U.: Model reduction for combustion chemistry. In: Turbulent Combustion Modeling, pp 193–220. Springer (2011)

  24. Griffiths, J.: Reduced kinetic models and their application to practical combustion systems. Prog. Energy Combust. Sci. 21(1), 25–107 (1995)

    Article  MathSciNet  Google Scholar 

  25. Løvås, T.: Model reduction techniques for chemical mechanisms. INTECH Open Access Publisher (2012)

  26. Tomlin, A.S., Turányi, T., Pilling, M.J.: Mathematical tools for the construction, investigation and reduction of combustion mechanisms. Comprehensive Chemical Kinetics 35, 293–437 (1997)

    Article  Google Scholar 

  27. Bykov, V., Maas, U.: The extension of the ILDM concept to reaction–diffusion manifolds. Combust. Theor. Model. 11(6), 839–862 (2007)

    Article  MATH  Google Scholar 

  28. Bykov, V., Neagos, A., Maas, U.: On transient behavior of non-premixed counterflow diffusion flames within the REDIM based model reduction concept. Proc. Combust. Inst. 34(1), 197–203 (2013)

    Article  Google Scholar 

  29. Bykov, V., Maas, U.: Problem adapted reduced models based on reaction–diffusion manifolds (REDIMs). Proc. Combust. Inst. 32(1), 561–568 (2009)

    Article  Google Scholar 

  30. Fischer, S., Markus, D., Ghorbani, A., Maas, U.: PDF simulations of the ignition of hydrogen/air, ethylene/air and propane/air mixtures by hot transient jets. Zeitschrift für Physikalische Chemie 231(10), 1773–1796 (2017)

    Article  Google Scholar 

  31. Wang, P., Platova, N., Fröhlich, J., Maas, U.: Large eddy simulation of the PRECCINSTA burner. Int. J. Heat Mass Transf. 70, 486–495 (2014)

    Article  Google Scholar 

  32. Wang, P., Zieker, F., Schießl, R., Platova, N., Fröhlich, J., Maas, U.: Large eddy simulations and experimental studies of turbulent premixed combustion near extinction. Proc. Combust. Inst. 34(1), 1269–1280 (2013)

    Article  Google Scholar 

  33. Steinhilber, G., Bykov, V., Maas, U.: REDIM reduced modeling of flame-wall-interactions: quenching of a premixed methane/air flame at a cold inert wall. Proc. Combust. Inst. 36(1), 655–661 (2017)

    Article  Google Scholar 

  34. Schießl, R., Bykov, V., Maas, U., Abdelsamie, A., Thévenin, D.: Implementing multi-directional molecular diffusion terms into reaction diffusion manifolds (REDIMs). Proc. Combust. Inst. 36(1), 673–679 (2017)

    Article  Google Scholar 

  35. Benzinger, M.S., Schießl, R., Maas, U.: A versatile coupled progress variable/REDIM, model for auto-ignition and combustion. Proc. Combust. Inst. 36(3), 3613–3621 (2017)

    Article  Google Scholar 

  36. Pope, S.: A Monte Carlo method for the PDF equations of turbulent reactive flow. Progress Combust. Energy Sci. 25 (1981)

    Article  Google Scholar 

  37. Yu, C., Minuzzi, F., Maas, U.: Numerical simulation of turbulent flames based on a hybrid RANS/Transported-PDF method and REDIM method. Eurasian Chem. Technol. J. 20(1), 23–31 (2018)

    Article  Google Scholar 

  38. Jenny, P., Pope, S., Muradoglu, M., Caughey, D.: A hybrid algorithm for the joint PDF equation of turbulent reactive flows. J. Comput. Phys. 166(2), 218–252 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Curl, R.: Dispersed phase mixing: i. theory and effects in simple reactors. AIChE J. 9(2), 175–181 (1963)

    Article  Google Scholar 

  40. Cao, R.R., Wang, H., Pope, S.B.: The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31(1), 1543–1550 (2007)

    Article  Google Scholar 

  41. Rembold, B., Jenny, P.: A multiblock joint PDF finite-volume hybrid algorithm for the computation of turbulent flows in complex geometries. J. Comput. Phys. 220 (1), 59–87 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Muradoglu, M., Jenny, P., Pope, S.B., Caughey, D.A.: A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154(2), 342–371 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. International workshop on measurement and computation of turbulent nonpremixed flames. [Online]. Available: http://www.sandia.gov/TNF/abstract.html

  44. Barlow, R., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. In: Symposium (International) on Combustion, vol. 27, pp 1087–1095. Elsevier (1998)

  45. Magagnato, F.: SPARC: structured parallel research code. Task Quarterly 2(2), 215–270 (1998)

    Google Scholar 

  46. Maas, U.: Mathematische Modellierung Instationärer Verbrennungsprozesse Unter Verwendung Detaillierter Reaktionsmechanismen. Ph.D. Thesis, Ruprecht-Karls-Universität, Heidelberg, Germany (1988)

  47. Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner, W., Lissianski, V., Qin, Z.: Gri-mech 3.0. GRI-Mech Home Page, http://www.me.berkeley.edu/gri_mech/ (2011)

  48. Bowman, C., Hanson, R., Davidson, W., Gardiner, W., Lissianski, V., Smith, G., Golden, D., Frenklach, M., Goldenberg, M.: Gri-mech 2.11. GRI-Mech Home Page, http://www.me.berkeley.edu/gri_mech/ (1995)

  49. Ge, Y., Cleary, M., Klimenko, A.: A comparative study of Sandia flame series (D–F) using sparse-lagrangian MMC modelling. Proc. Combust. Inst. 34(1), 1325–1332 (2013)

    Article  Google Scholar 

  50. Cao, R.R., Pope, S.B.: The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames. Combust. Flame 143(4), 450–470 (2005)

    Article  Google Scholar 

  51. Xu, J., Pope, S.B.: PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)

    Article  Google Scholar 

  52. Yu, C., Bykov, V., Maas, U.: Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames. Proc. Combust. Inst. 37(2), 2183–2190 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the German Research Foundation (DFG) within the project SFB/TR150 is gratefully acknowledged. F. Minuzzi was supported by CAPES - Brazil, during his stay in Germany, under the grant No 88881.132868/2016-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Minuzzi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minuzzi, F., Yu, C. & Maas, U. Simulation of methane/air non-premixed turbulent flames based on REDIM simplified chemistry. Flow Turbulence Combust 103, 963–984 (2019). https://doi.org/10.1007/s10494-019-00059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00059-3

Keywords

Navigation