Skip to main content
Log in

Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure of the perturbations is determined by the proposed transport equations, and thus does not have to be inferred from full-field reference data. Depending on a small number of model parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered. In order to make predictions with quantified uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach. In the former no reference data is required and computationally inexpensive intervals are computed. When reference data is available, Bayesian inference can be applied to obtained informed distributions of the model parameters and simulation output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D.: Cfd vision 2030 study: a path to revolutionary computational aerosciences (2014)

  2. Cheung, S.H., Oliver, T.A., Prudencio, E.E., Prudhomme, S., Moser, R.D.: Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Safe 96(9), 1137–1149 (2011)

    Article  Google Scholar 

  3. Edeling, W.N., Cinnella, P., Dwight, R.P., Bijl, H.: Bayesian estimates of parameter variability in the k– ε turbulence model. J. Comp. Phys. 258, 73–94 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T.: Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edeling, W.N., Cinnella, P., Dwight, R.P.: Predictive rans simulations via bayesian model-scenario averaging. J. Comp. Phys. 275, 65–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Emory, M., Larsson, J., Iaccarino, G.: Modeling of structural uncertainties in reynolds-averaged navier-stokes closures. Phys. Fluids 25(11), 110822 (2013)

    Article  Google Scholar 

  7. Gorlé, C., Iaccarino, G.: A framework for epistemic uncertainty quantification of turbulent scalar flux models for reynolds-averaged navier-stokes simulations. Phys. Fluids 25(5), 055105 (2013)

    Article  Google Scholar 

  8. Olsen, M.E., Coakley, T.J.: The lag model, a turbulence model for non equilibrium flows. In: AIAA Computational Fluid Dynamics Conference, 15 th, Anaheim, CA (2001)

  9. Pope, S.B.: Turbulent flows (2001)

  10. Wilcox, D.C.: Turbulence modeling for cfd (1998)

  11. Banerjee, S., Krahl, R., Durst, F., Zenger, C.: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 8, N32 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of the 6th Joint Eurographics-IEEE TCVG conference on Visualization, pages 147–154. Eurographics Association (2004)

  13. Ramachandran, P., Varoquaux, G.: Mayavi: 3d visualization of scientific data. Comput. Sci. Eng. 13(2), 40–51 (2011)

    Article  Google Scholar 

  14. Emory, M., Pecnik, R., Iaccarino, G.: Modeling structural uncertainties in reynolds-averaged computations of shock/boundary layer interactions. AIAA Paper 479, 2011 (2011)

    Google Scholar 

  15. Gorlé, C., Emory, M., Larsson, J., Iaccarino, G.: Epistemic uncertainty quantification for rans modeling of the flow over a wavy wall. Center for Turbulence Research, Annual Research Briefs (2012)

  16. Lillard, R.P., Oliver, A.B., Olsen, M.E., Blaisdell, G.A., Lyrintzis, A.S.: The lagrst model: a turbulence model for non-equilibrium flows. AIAA Paper 444, 2012 (2012)

    Google Scholar 

  17. Rotta, J.C.: Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik 129(6), 547–572 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  18. Revell, A.J., Benhamadouche, S., Craft, T., Laurence, D.: A stress–strain lag eddy viscosity model for unsteady mean flow. Int. J. Heat Fluid Fl. 27(5), 821–830 (2006)

    Article  Google Scholar 

  19. Ling, J., Templeton, J.: Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged navier stokes uncertainty. Phys. Fluids 27(8), 085103 (2015)

    Article  Google Scholar 

  20. Langley Research Center Turbulence Modeling Resource. Axisymmetric subsonic jet. https://turbmodels.larc.nasa.gov/jetsubsonic_val.html, 2017. [Retrieved February-2017]

  21. Lay, D.C: Linear algebra and its applications (2006)

  22. Schumann, U.: Realizability of reynolds-stress turbulence models. Phys. Fluids 20(5), 721–725 (1977)

    Article  MATH  Google Scholar 

  23. Durbin, P.A., Speziale, C.G.: Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 280, 395–407 (1994)

    Article  MATH  Google Scholar 

  24. Edeling, W.N., Iaccarino, G., Cinnella, P.: A return to eddy viscosity model for epistemic uq in rans closures. Center for Turbulence Research, Annual Research Briefs (2016)

  25. Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. fluid Mech. 330(1), 349–374 (1997)

    Article  MATH  Google Scholar 

  26. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis, vol. 2. Chapman & Hall/CRC, Boca Raton (2014)

    MATH  Google Scholar 

  27. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. B 63(3), 425–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oliver, T.A., Moser, R.D.: Bayesian uncertainty quantification applied to rans turbulence models. In: J Phys Conf Ser, volume 318, page 042032. IOP Publishing (2011)

  29. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Google Scholar 

  30. Marzouk, Y., Xiu, D.: A stochastic collocation approach to bayesian inference in inverse problems. Commun. Comput. Phys. 6, 826–847 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Witteveen, J.A.S., Doostan, A., Pecnik, R., Iaccarino, G.: Uncertainty quantification of the transonic flow around the rae 2822 airfoil. Center for Turbulence Research, Annual Briefs, Stanford University (2009)

  32. Edeling, W.N., Dwight, R.P., Cinnella, P.: Simplex-stochastic collocation method with improved scalability. J. Comp. Phys. 310, 301–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ghanem, R., Spanos, P.D.: Polynomial chaos in stochastic finite elements. J. Appl. Mech. 57(1), 197–202 (1990)

    Article  MATH  Google Scholar 

  34. Witteveen, J.A.S., Iaccarino, G.: Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J. Sci. Comput. 34(2), A814—A838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dongbin, X., Karniadakis, G.E.: The wiener–askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bridges, J., Wernet, M.P.: The nasa subsonic jet particle image velocimetry (piv) dataset (2011)

  37. Le, H., Moin, P.: Direct numerical simulation of turbulent flow over a backward-facing step, Center for Turbulence Research, Annual Briefs, Stanford University (1992)

  38. Jovic, S., Driver, D.M.: Backward-facing step measurements at low reynolds number, r e h = 5000, NASA Technical Memorandum, (108807) (1994)

  39. Thangam, S., Speziale, C.G.: Turbulent flow past a backward-facing step-a critical evaluation of two-equation models. AIAA J. 30(5), 1314–1320 (1992)

    Article  Google Scholar 

  40. Iaccarino, G., Mishra, A.A., Ghili, S.: Eigenspace perturbations for uncertainty estimation of single-point turbulence closures. Phys. Rev. Fluids 2(2), 024605 (2017)

    Article  Google Scholar 

  41. Mishra, A., Iaccarino, G.: Rans predictions fo high-speed flows using enveloping models, Center for Turbulence Research, Annual Research Briefs (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. N. Edeling.

Ethics declarations

This investigation was funded by the United States Department of Energy’s (DoE) National Nuclear Security Administration (NNSA) under the Predictive Science Academic Alliance Program II (PSAAP II) at Stanford University.

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edeling, W.N., Iaccarino, G. & Cinnella, P. Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty. Flow Turbulence Combust 100, 593–616 (2018). https://doi.org/10.1007/s10494-017-9870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9870-6

Keywords

Navigation