Skip to main content
Log in

Heat Transfer Effects on a Fully Premixed Methane Impinging Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A numerical assessment of different thermal conditions for an impinging flame configuration is investigated using large-eddy simulation. The cases of study correspond to a turbulent methane flame at equivalence ratio ER = 0.8 and temperature T = 298 K exiting at 30 m/s with a nozzle-to-plate distance over diameter of H/D = 2. Computational cases based on different thermal conditions are compared to a conjugate case, in which fluid and solid domains are solved simultaneously. A solid material defined with enhanced conductivity properties is used to represent the wall in the conjugate case, so that the characteristic time scales of the solid are reduced. The results indicate that the heat transfer condition influences not only the mean temperature and gradients, but also the temperature fluctuations in the near-wall region. It is found that adiabatic, isothermal and more sophisticated Robin-type boundary conditions contribute to underpredict/overpredict the temperature field near the wall. As the time scales of fluid and solid are of the same order, the use of conjugate approaches is required to predict the correct flow fields near the wall and the skin temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaure, S., Duchaine, F., Staffelbach, G., Gicquel, L.: Massively parallel conjugate heat transfer methods relying on large eddy simulation applied to an aeronautical combustor. Comput. Sci. Disc. 6, 015008 (2013)

    Article  Google Scholar 

  2. Bunker, R.S.: Gas turbine heat transfer: ten remaining hot gas path challenges. J. Turbomach. 129, 193–201 (2007)

    Article  Google Scholar 

  3. Duchaine, F., Mendez, S., Nicoud, F., Corpron, A., Moureau, V., Poinsot, T.: Coupling heat transfer solvers and large eddy simulations for combustion applications. In: CTR Proceedings of Summer Program (2008)

  4. Farhat, C., Lesoinne, M.: Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput. Methods Appl. Mech. Eng. 182, 499–515 (2000)

    Article  MATH  Google Scholar 

  5. Garg, V.: Heat transfer research on gas turbine airfoils at nasa grc. Int. J. Heat Fluid Flow 23, 109–136 (2002)

    Article  Google Scholar 

  6. Ferrero, P., D’Ambrosio, D.: A numerical method for conjugate heat transfer problems in hypersonic flows. 40th AIAA Thermophysics Conference, 4247 (2008)

  7. Duchaine, F., Mendez, S., Nicoud, F., Corpron, A., Moureau, V., Poinsot, T.: Conjugate heat transfer with large eddy simulation for gas turbine components. C. R. Mec. 337, 550–561 (2009)

    Article  Google Scholar 

  8. Craft, T., Iacovides, H., Yoon, J.: Progress in the use of non-linear two-equation models in the computation of convective heat-transfer in impinging and separated flows. Flow Turbul. Combust. 63, 59–80 (2000)

    Article  MATH  Google Scholar 

  9. Chatelain, A., Ducros, F., Olivier, M.: Large eddy simulation of conjugate heat-transfer using thermal wall-functions. ERCOFTAC Ser. 9, 307–314 (2004)

    Article  Google Scholar 

  10. Maheu, N., Moureau, V., Domingo, P., Duchaine, F., Balarac, G.: Large-eddy simulations of flow and heat transfer around a low-mach number turbine blade. In: CTR Proceedings of Summer Program (2012)

  11. Mira, D., Jiang, X., Moulinec, C., Emerson, D.: Numerical investigation of the effects of fuel variability on the dynamics of syngas impinging jet flames. Fuel 103, 646–662 (2013)

    Article  Google Scholar 

  12. Hadziabic, M., Hanjalic, K.: Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221–260 (2008)

    MATH  Google Scholar 

  13. Fuchs, L., Hällqvist, T.: Numerical study of impinging jets with heat transfer-inlet conditions effects. 47th AIAA Aerospace Science Meeting, 1578 (2009)

  14. Dairay, T., Fortune, V., Lamballais, E., Brizzi, L.: Les of a turbulent jet impinging on a heated wall using high-order numerical schemes. Int. J. Heat Fluid Flow 50, 177–187 (2011)

    Article  Google Scholar 

  15. Dewan, A., Dutta, R., Srinivasan, B.: Recent trends in computation of turbulent jet impingement heat transfer. Heat Transf. Eng. 22, 447–460 (2012)

    Article  Google Scholar 

  16. Lodato, G., Vervisch, L., Domingo, P.: A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet. Phys. Fluids 21, 035102 (2009)

    Article  MATH  Google Scholar 

  17. Dinesh, K.R., Jiang, X., van Oijen, J.A.: Numerical simulation of hydrogen impinging jet flame using flamelet generated manifold reduction. Int. J. Hydrog. Energy 37, 4502–4515 (2012)

    Article  Google Scholar 

  18. Jiang, X., Luo, K., de Goey, L., Bastiaans, R., van Oijen, J.: Swirling and impinging effects in an annular nonpremixed jet flame. Flow Turbul. Combust. 86, 63–88 (2011)

    Article  MATH  Google Scholar 

  19. Mira, D., Jiang, X.: Numerical investigations of a hydrogen impinging flame with different finite-rate chemical kinetic mechanisms. Fuel 109, 285–296 (2013)

    Article  Google Scholar 

  20. Pantangi, P., Sadiki, A., Janicka, J., Mann, M., Dreizler, A.: Les of premixed methane flame impinging on the wall using non-adiabatic flamelet generated manifold (fgm) approach. Flow Turbul. Combust. 92, 805–836 (2014)

    Article  Google Scholar 

  21. Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 3rd edn. Ed. Edwards (2012)

  22. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  23. Mira, D., Jiang, X., Moulinec, C., Emerson, D.: Numerical assessment of subgrid scale models for scalar transport in large-eddy simulations of hydrogen-enriched fuels. Int. J. Hydrog. Energy 39, 7173–7189 (2014)

    Article  Google Scholar 

  24. Jaiman, R.K., Jiao, X., Geubelle, P., Loth, E.: Conservative load transfer along curved fluidsolid interface with non-matching meshes. J. Comput. Phys. 218, 372–397 (2006)

    Article  MATH  Google Scholar 

  25. Fournier, Y.: Parallel location and exchange. Tech. rep., Électricité de France (EDF) (2014)

  26. Mantel, T., Egolfopoulos, F., Bowman, C.: A new methodology to determine kinetic parameters for one- and two-step chemical models. In: CTR Proceedings of Summer Program (1996)

  27. Collin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  MATH  Google Scholar 

  28. Durand, L., Huber, A., Polifke, W.: Implementation and validation of les models for inhomogeneously premixed turbulent combustion. In: Proceedings of European combustion meeting. Louvain-la-Neuve, Belgium

  29. Houzeaux, G., Principe, J.: A variational subgrid scale model for transient incompressible flows. Int. J. Comput. Fluid D 22, 135–152 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Houzeaux, G., Aubry, R., Vazquez, M.: Extension of fractional step techniques for incompressible flows: the preconditioned orthomin (1) for the pressure schur complement. Comput. Fluids 40, 297–313 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lohner, R., Cebral, F.M.J., Aubry, R., Houzeaux, G.: Deflated preconditioned conjugate gradient solvers for the pressure-poisson equation: extensions and improvements. Int. J. Numer. Methods Eng. 87, 2–14 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Houzeaux, G., Vazquez, M., Aubry, R., Cela, J.: A massively parallel fractional step solver for incompressible flows. J. Comput. Phys. 228, 6316–6332 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kee, R., Dixon-Lewis, G., Warnatz, J., Coltrin, M., Miller, J.: A fortran computer code package for the evaluation of gas-phase multicomponent transport properties, Tech. Rep. SAND86–8246, Sandia National Laboratories (1986)

  34. Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R., Song, S., Gardiner, W., Lissianski, V., Qin, Z.: GRI-Mech 3.0. http://www.me.berkeley.edu/gri-mech/(1999)

  35. Chatelain, A., Ducros, F., Métais, O.: Large eddy simulation of conjugate heat-transfer using thermal wall-functions, direct and large-eddy simulation V. Kluwer, Norwell (2004)

  36. Jaiman, R., Jiao, X., Geubelle, P., Loth, E.: Conservative load transfer along curved fluid–solid interface with non-matching meshes. J. Comput. Phys. 218, 373–397 (2006)

    Article  MATH  Google Scholar 

  37. Roe, B., Jaiman, R., Haselbacher, A., Geubelle, P.: Combined interface boundary conditions method for coupled thermal simulations. Int. J. Numer. Methods Fluids 57, 329–354 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tummers, M., Jacobse, J., Voorbrood, S.: Turbulent flow in the near field of a round impinging jet. Int. J. Heat Mass Transf. 54, 4939–4948 (2011)

    Article  Google Scholar 

  39. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27, 585–593 (2006)

    Article  MATH  Google Scholar 

  40. Natarajan, T., Jewkes, J., Narayanaswamy, R., Chung, Y., Lucey, A.: Reynolds averaged and large eddy computations of flow and heat transfer under round jet impingement, p. V01AT09A009. In: Proceedings of ASME, Chicago (2014)

  41. Shum-Kivan, F., Duchaine, F., Gicquel, L.: Large-eddy simulation and conjugate heat transfer in a round impinging jet. In: Proceedings os ASME Turbo Expo, Düsseldorf, Germany

  42. Uddin, N., Neumann, S., Weigand, B.: {LES} simulations of an impinging jet: On the origin of the second peak in the nusselt number distribution. Int. J. Heat Mass Transf. 57, 356–368 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mira, D., Zavala-Ake, M., Avila, M. et al. Heat Transfer Effects on a Fully Premixed Methane Impinging Flame. Flow Turbulence Combust 97, 339–361 (2016). https://doi.org/10.1007/s10494-015-9694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9694-1

Keywords

Navigation