Skip to main content
Log in

LES of Premixed Methane Flame Impinging on the Wall Using Non-adiabatic Flamelet Generated Manifold (FGM) Approach

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this paper LES of flame wall interaction using a non-adiabatic FGM approach is reported for a premixed methane fuel jet impinging on a spherical disk. Nitrogen is used as co-flow in order to avoid the interaction with the surrounding air and combustion. The flow field is described by means of the Smagorinsky model with Germano procedure for SGS stresses. The SGS scalar flux in scalar transport equations is modeled by the linear eddy diffusivity model. Two aspects are especially addressed in this paper. First focus is on the grid resolution required near the wall without including a special wall-adapted SGS modeling in reacting configurations. The second aspect is devoted to the integration of the near wall kinetic effects into the FGM framework. The results for the flow field, mixing and combustion properties are presented and analyzed in terms of grid resolution, Reynolds number (in reacting and non-reacting case) and adiabaticity. Comparisons with available experimental data show satisfactory agreement. An outline of the thermal and flow boundary layer analysis is subsequently provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poinsot, T., Veynante, D., Edwards, R.T.: Theoretical and numerical combustion (2001)

  2. Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H.: Turbulent flame-wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010)

    Article  MATH  Google Scholar 

  3. Wang, Y., Trouvé, A.: Direct numerical simulation of non-premixed flame-wall interactions. J. Phys. Conf. Ser. 16, 119–123 (2005)

    Article  Google Scholar 

  4. Muhamed, H.: LES, RANS and combined simulation of impinging flows and heat transfer. PhD thesis, TU Delft (2006)

  5. Janicka, J., Sadiki, A.: Large Eddy Simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2004)

    Article  Google Scholar 

  6. Pitsch, H.: Large Eddy Simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  7. Van Oijen, J.A., De Goey, L.P.H.: Modelling of premixed laminar flames using flamelet- generated manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

    Article  Google Scholar 

  8. CHEM1D: A one-dimensional laminar flame code. Eindhoven University of Technology, available at www.tue.nl/combustion

  9. van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127, 2124–2134 (2001)

    Article  Google Scholar 

  10. van Oijen, J.A., de Goey, L.P.H.: A numerical study of confined triple flames using a flamelet-generated manifold. Combust. Theory Model. 8(1), 141–163 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pantangi, P., Sadiki, A., Janicka, J., Hage, M., Dreizler, A., van Oijen, J.A., Hassa, C., Heinze, J., Meier, U.: LES of pre-vaporized kerosene combustion at high pressures in a single sector combustor taking advantage of the flamelet Generated manifolds method. GT2011- 45819. Proceedings of ASME Turbo Expo 2011. Vancouver (2011)

  12. Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Model. 7(3) (2003)

  13. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF. Proc. Combust. Inst. 30(1), 867–874 (2005)

    Article  Google Scholar 

  14. Davidson, L.: Large Eddy Simulations: how to evaluate resolution. Int. J. Heat Fluid Flow 30(5), 1016–1025 (2009)

    Article  Google Scholar 

  15. Cabot, W., Moin, P.: Approximate wall boundary conditions in the Large Eddy Simulation of high Reynolds number flow. Flow Turbul. Combust. 63(1–4), 269–291 (2000)

    Article  MATH  Google Scholar 

  16. Kemenov, K.A., Wang, H., Pope, S.B.: Turbulence resolution scale dependence in Large Eddy Simulations of a jet flame. Flow Turbul. Combust. 88(4), 529–561 (2012)

    Article  MATH  Google Scholar 

  17. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 3670–3681 (2004)

    Article  Google Scholar 

  18. Temmerman, L., Leschziner, M.A., Mellen, C.P., Frhlich, J.: Investigation of wall-function approximations and subgrid-scale models in Large Eddy Simulation of separated flow in a channel with streamwise periodic constrictions. Int. J. Heat Fluid Flow 24(2), 157–180 (2003)

    Article  Google Scholar 

  19. Ouvrard, H., Koobus, B., Salvetti, M.V., Camarri, S., Dervieux, A.: Variational multiscale LES and hybrid RANS/LES simulation of complex unsteady flow. VECPAR, Toulouse (2008)

    Google Scholar 

  20. Baya, T.H., Cabrit, O., Truffin, K., Bruneaux, G., Nicoud, F.: A Dynamic procedure for advanced subgrid-scales models and wall-bounded flows. TSFP-7, Ottawa (2011)

    Google Scholar 

  21. Uddin, N., Neumann, S.O., Weigand, B., Younis, B.A.: Large Eddy Simulations and heat-flux modeling in a turbulent impinging jet. Numer. Heat Transf. A Appl. 55(10), 906–930 (2009)

    Article  Google Scholar 

  22. Viskanta, R.: Heat transfer to impinging isothermal gas and flame jets. Exp. Thermal Fluid Sci. 6(2), 111–134 (1993)

    Article  Google Scholar 

  23. Zhang, Y., Bray, K.N.C.: Characterization of impinging jet flames. Combust. Flame 116(4), 671–674 (1999)

    Article  Google Scholar 

  24. Li, H.B., Zhen, H.S., Leung, C.W., Cheung, C.S.: Nozzle effect on heat transfer and CO emission of impinging premixed flames. Int. J. Heat Mass Transf. 54(1–3), 625–635 (2011)

    Article  Google Scholar 

  25. Chauvy, M., Delhom, B., Reveillon, J., Demoulin, F.X.: Flame/wall interactions: laminar study of unburnt HC formation. Flow Turbul. Combust. 84(3), 369–396 (2010)

    Article  MATH  Google Scholar 

  26. Dabireau, F., Cuenot, B., Vermorel, O., Poinsot, T.: Interaction of flames of \(H_{2}\)+ \(O_{2}\) with inert walls. Combust. Flame 135(1), 123–133 (2003)

    Article  Google Scholar 

  27. Andrae, J., Bjrnbom, P., Edsberg, L.: Numerical studies of wall effects with laminar methane flames. Combust. Flame 128(1), 165–180 (2002)

    Article  Google Scholar 

  28. Boust, B., Sotton, J., Labuda, S.A., Bellenoue, M.: A thermal formulation for single-wall quenching of transient laminar flames. Combust. Flame 149(3), 286–294 (2007)

    Article  Google Scholar 

  29. Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.H.: Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107(1), 27–44 (1996)

    Article  Google Scholar 

  30. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  31. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  32. Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44(5), 349–377 (2008)

    Article  Google Scholar 

  33. Wegner, B.: A Large Eddy Simulation Technique for the Prediction of Flow, Mixing and Combustion in Gas Turbine Combustors. VDI-Verlag (2007)

  34. Pantangi, P., Chirgui, M., Dinkelacker, F., Sadiki, A.: LES of premixed v-flame using anisotropic SGS scalar flux model. In: Seventh Mediterranean Combustion Symposium. Cagliari, Sardinia (2011)

  35. Huai, Y., Sadiki, A.: Analysis and optimization of turbulent mixing with large eddy simulation. In: ASME 2nd joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006-98416, Miami (2006)

  36. Albrecht, B.A., Zahirovic, S., Bastiaans, R.J.M., Van Oijen, J.A., De Goey, L.P.H.: A premixed flamelet- PDF model for biomass combustion in a grate furnace. Energy Fuels 22(3), 1570–1580 (2008)

    Article  Google Scholar 

  37. Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141(3), 271–280 (2005)

    Article  Google Scholar 

  38. Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)

    Article  Google Scholar 

  39. Landenfeld, T., Sadiki, A., Janicka, J.: A turbulence-chemistry interaction model based on a multivariate presumed beta-pdf method for turbulent flames. Flow Turbul. Combust. 68(2), 111–135 (2002)

    Article  MATH  Google Scholar 

  40. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., WCG, Jr., Lissianski, V.V., Qin, Z.: GRI-Mech 3.0. www.me.berkeley.edu/gri_mech/

  41. Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed generated manifolds for the computation of technical combustion systems. ASME (2009)

  42. Dinkelacker, F., Hölzler, S.: Investigation of a turbulent flame speed closure approach for premixed flame calculations. Combust. Sci. Technol. 158(1), 321–340 (2000)

    Article  Google Scholar 

  43. Lipatnikov, A., Chomiak, J.: Dependence of heat release on the progress variable in premixed turbulent combustion. Proc. Combust. Inst. 28(1), 227–234 (2000)

    Article  Google Scholar 

  44. Colin, O., Ducros, F., Veynante, D., et Poinsot, T.: A thickened flame model for Large Eddy Simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)

    Article  Google Scholar 

  45. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–180 (2002)

    Article  Google Scholar 

  46. Chrigui, M., Gounder, J., Sadiki, A., Masri, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust. Flame 159(8), 2718–2741 (2012)

    Article  Google Scholar 

  47. Kuenne, G., Seffrin, F., Fuest, F., Stahler, T., Ketelheun, A., Geyer, D., Janicka, J., Dreizler, A.: Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and Large Eddy Simulation. Combust. Flame 159(8), 2669–2689 (2012)

    Article  Google Scholar 

  48. Sick, V., Drake, M.C., Fansler, T.D.: High-speed imaging for direct-injection gasoline engine research and development. Exp. Fluids 49(4), 937–947 (2010)

    Article  Google Scholar 

  49. Mann, M., Singh, A., Kissel, T., Dreizler, A.: Simultane Messung von CO Konzentrationen und Temperatur in Staupunkt-stabilisierten Flammen, 25. Deutscher Flammentag Verbrennung und Feuerung, Karlsruhe (2011)

    Google Scholar 

  50. Hasse, C., Peters, N.: A two mixture fraction flamelet model applied to split injections in a DI diesel engine. Proc. Combust. Inst. 30(2), 2755–2762 (2005)

    Article  Google Scholar 

  51. Vervisch, L., Poinsot, T.: Direct numerical simulation of non-premixed turbulent flames. Ann. Rev. Fluid Mech. 30(1), 655–691 (1998)

    Article  MathSciNet  Google Scholar 

  52. Piomelli, U., Chasnov, J.R.: Large Eddy Simulations: theory and applications. In: Transition and Turbulence Modelling, pp. 269–336. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  53. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  54. Faghri, A., Zhang, Y., Howell, J.R.: Advanced Heat and Mass Transfer. Global Digital Press, Columbia (2010)

    Google Scholar 

  55. Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of Large Eddy Simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust. 91(4), 867–893 (2013)

    Article  Google Scholar 

  56. Böhm, B., Stein, O., Kempf, A., Dreizler, A.: In-nozzle measurements of a turbulent opposed jet using PIV. Flow Turbul. Combust. 85(1), 73–93 (2010)

    Article  MATH  Google Scholar 

  57. Singh, A., Mann, M., Kissel, T., Brbach, J., Dreizler, A.: Simultaneous measurements of temperature and CO concentration in stagnation stabilized flames. Flow Turbul. Combust. 1–17 (2011)

  58. Sergeev, O.A., Shashkov, A.G., Umanskii, A.S.: Thermophysical properties of quartz glass. J. Eng. Phys. 43(6), 1375–1383 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Pantangi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantangi, P., Sadiki, A., Janicka, J. et al. LES of Premixed Methane Flame Impinging on the Wall Using Non-adiabatic Flamelet Generated Manifold (FGM) Approach. Flow Turbulence Combust 92, 805–836 (2014). https://doi.org/10.1007/s10494-013-9526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9526-0

Keywords

Navigation