Skip to main content
Log in

Study of Stall Development Around an Airfoil by Means of High Fidelity Large Eddy Simulation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large Eddy Simulation of the bubble bursting process over a NACA-0012 airfoil at \(Re_{c}=10^{5}\) indicates that the flow at a fixed angle of attack below the critical stall value exhibits a short (with respect to Gaster’s criteria, Gaster, Number CP-4 in AGARD, 1966) Laminar Separation Bubble (LSB) at the leading edge of the airfoil. The airfoil is smoothly pitched-up through the static stall angle to reproduce the bursting process of the short LSB that initiates a leading edge stall typical of low Reynolds number airfoil. The temporal evolution of characteristic length scales is monitored during the transient flow. Particular attention is paid to the characteristic time involved during the growth and bursting of the LSB. A recent empirical bursting criterion is used to analyse the LES results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alam, M., Sandham, N.: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410(1), 1–28 (2000)

    Article  MATH  Google Scholar 

  2. Almutairi, J., Jones, L., Sandham, N.: Intermittent bursting of a laminar separation bubble on an airfoil. AIAA J. 48(2), 414–426 (2010)

    Article  Google Scholar 

  3. Brear, M., Hodson, H.: The response of a laminar separation bubble to “aircraft engine representative” freestream disturbances. Exp. Fluids 35(6), 610–617 (2003)

    Article  Google Scholar 

  4. Diwan, S., Chetan, S., Ramesh, O.: On the bursting criterion for laminar separation bubbles. In: IUTAM Symposium on Laminar-Turbulent Transition, pp. 401–407 (2006)

  5. Diwan, S.S., Ramesh, O.N.: On the origin of the inflectional instability of laminar separation bubble. J. Fluid Mech. 629, 263–298 (2009)

    Article  MATH  Google Scholar 

  6. Doligalski, T., Smith, C., Walker, J.: Vortex interactions with walls. Ann. Rev. Fluid Mech. 26, 573–616 (1994)

    Article  MathSciNet  Google Scholar 

  7. Ericsson, L., Reding, J.: Fluid mechanics of dynamic stall part I. Unsteady flow concepts. J. Fluids Struct. 2(1), 1–33 (1988)

    Article  Google Scholar 

  8. Gaster, M.: The structure and behaviour of laminar separation bubbles. Number CP-4 in AGARD, pp. 813–854 (1966)

  9. Gleize, V., Costes, M., Le Pape, A., Richez, F.: Numerical simulation of a pitching airfoil under dynamic stall conditions including laminar/turbulent transition. In: 46th AIAA Aerospace Sciences Meeting (2008)

  10. Häggmark, C., Bakchinov, A., Alfredsson, P.: Experiments on a two–dimensional laminar separation bubble. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 358(1777), 3193–3205 (2000)

    Article  MATH  Google Scholar 

  11. Hatman, A., Wang, T.: Separated-flow transition: part 1-experimental methodology and mode classification. In: ASME Paper (98-GT), 461 (1998)

  12. Horton, H.: Laminar separation bubbles in two and three dimensional incompressible flow. PhD thesis (1968)

  13. Jones, L., Sandberg, R., Sandham, N.: Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175 (2008)

    Article  MATH  Google Scholar 

  14. Jones, L., Sandberg, R., Sandham, N.: Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257 (2010)

    Article  MATH  Google Scholar 

  15. Lamballais, E., Silvestrini, J., Laizet, S.: Direct numerical simulation of flow separation behind a rounded leading edge: study of curvature effects. Int. J. Heat Fluid Flow 31(3), 295–306 (2010)

    Article  Google Scholar 

  16. Lang, M., Rist, U., Wagner, S.: Investigations on controlled transition development in a laminar separation bubble by means of lda and piv. Exp. Fluids 36(1), 43–52 (2004)

    Article  Google Scholar 

  17. Laurent, C., Mary, I., Gleize, V., Lerat, A., Arnal, D.: DNS database of a transitional separation bubble on a flat plate and application to RANS modeling validation. Comput. Fluids 61, 21–30 (2012)

    Article  Google Scholar 

  18. Marxen, O., Henningson, D.: The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 1–33 (2011)

    Article  MATH  Google Scholar 

  19. Marxen, O., Lang, M., Rist, U., Wagner, S.: A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble. Flow Turbulence Combust. 71(1), 133–146 (2003)

    Article  MATH  Google Scholar 

  20. Marxen, O., Rist, U.: Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech. 660, 37–54 (2010)

    Article  MATH  Google Scholar 

  21. Mary, I., Sagaut, P.: LES of a flow around an airfoil near stall. AIAA J. 40, 1139–1145 (2002)

    Article  Google Scholar 

  22. McCroskey, W.J.: Unsteady airfoils. Ann. Rev. Fluid Mech. 14, 285–311 (1982)

    Article  Google Scholar 

  23. McCroskey, W.J., Carr, L.W., McAlister, K.W.: Dynamic stall experiments on oscillating airfoils. AIAA J. 14, 57–63 (1976)

    Article  Google Scholar 

  24. McCroskey, W.J., McAlister, K.W., Carr, L.W., Pucci, S.L., Lamber, O., Indergrand, R.F.: Dynamic stall on advanced airfoil sections. J. Am. Helicopter Soc. 26, 40–50 (1981)

    Article  Google Scholar 

  25. McCroskey, W.J., Phillipe, J.J.: Unsteady viscous flow on oscillating airfoil. AIAA J. 13, 70–79 (1975)

    Google Scholar 

  26. McCullough, G.B., Gault, D.E.: Examples of three representative types of airfoil-section stall at low speed. NACA TN 2502 (1951)

  27. Owen, P., Klanfer, L.: On the Laminar Boundary Layer Separation from the Leading Edge of a Thin Aerofoil. Defense Technical Information Center (1953)

  28. Rist, U., Augustin, K.: Control of laminar separation bubbles using instability waves. AIAA J. 44(10), 2217 (2006)

    Article  Google Scholar 

  29. Spalart, P., Strelets, M.: Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329–349 (2000)

    Article  MATH  Google Scholar 

  30. Visbal, M.R.: Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49(10), 2152–2170 (2011)

    Article  MathSciNet  Google Scholar 

  31. Watmuff, J.: Evolution of a wave packet into vortex loops in a laminar separation bubble. J. Fluid Mech. 397(1), 119–169 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, Z., Voke, P.: Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J. Fluid Mech. 439, 305–333 (2001)

    Article  MATH  Google Scholar 

  33. Yarusevych, S., Sullivan, P., Kawall, J.: On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech. 632, 245 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Alferez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alferez, N., Mary, I. & Lamballais, E. Study of Stall Development Around an Airfoil by Means of High Fidelity Large Eddy Simulation. Flow Turbulence Combust 91, 623–641 (2013). https://doi.org/10.1007/s10494-013-9483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9483-7

Keywords

Navigation