Skip to main content

Advertisement

Log in

Modeling and 3D-Simulation of the Kinetic Effects in the Post-Flame Region of Turbulent Premixed Flames Based on the G-Equation Approach

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In order to simulate the premixed turbulent flame and to study the thermodynamical and chemical state in the post flame region we integrate a number of appropriate submodels in a complete model. The flame front position is described as an iso-surface of a field variable G, and chemistry and turbulence-chemistry interaction models are conditioned on the flame front position following the conditioned progress variable approach (CPVA). Three special features of the model have been addressed to clarify following questions: (1) Is it really necessary to apply the conditioned progress variable approach, or is the ILDM based on the multivariate presumed PDF alone able to predict the flame behavior with reasonable accuracy? (2) Is the CPVA based on ILDM notedly advantageous compared to that based on the chemistry equilibrium? (3) How noticeable is the influence of some model parameters for the description of the flame brush thickness on the prediction of species concentration in the postflame region? For this purpose, some simulation results are presented and compared with experimental data of a turbulent premixed flame, the so-called “F2” case experimentally investigated by Chen et al. [Combust. Flame 107 (1996) 223–224]. Comparison results with different model combinations along with equilibrium chemistry consideration reveal that the CPVA based on ILDM achieved better agreement with experimental data provided suitable value for the model parameter is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peters, N., Turbulent Combustion. Cambridge University Press, Cambridge (2000).

    MATH  Google Scholar 

  2. Oberlack, M., Wenzel, H. and Peters, N., On symmetries, invariant solutions and averaging of the G-equation in premixed combustion. Combust. Theor. Model. 5 (2001) 363–383.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bray, K.N.C., Libby, P.A. and Moss, J.B., Combust. Flame 61 (1985) 87–102.

    Google Scholar 

  4. Veynante, D. and Vervisch, L., Turbulent combustion modeling. Proc. Energy Combust. Sci. 28(3) (2002) 193–301.

    Google Scholar 

  5. Chen, Y.C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U. and Mansour, M.S., Combust. Flame 107 (1996) 223–224.

    Google Scholar 

  6. Veynante, D., Piana, J., Duklos, J.M. and Martel, C., Experimental analysis of flame surface density model for premixed turbulent combustion. In: Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute (1996) pp. 413–420.

  7. Bailly, Garreton, D., Simonin, O., Bruel, P., Champion, M., Deshaies, B., Duplantier, S. and Sanquer, S., Experimental and numerical study of premixed flame stabilized by a rectangular section cylinder. In: Twenty Sixth Symposium (International) on Combustion, The Combustion Institute (1996) pp. 923–930.

  8. Piana, J., Veynante, D., Candel, S. and Poinsot, T., Direct numerical simulation analysis of the G-equation in premixed combustion. In: Chollet, J.P., Voke, P.R. and Kleiser, L. (eds.), Direct and Large Eddy Simulation II, Kluwer Academic Publishers (1997) pp. 321–330.

  9. Borger, M., Veynante, D., Boughanem, H. and Trouve, A., Direct Numerical Simulation analysis of the flame surface density concept for Large Eddy Simulation of turbulent premixed combustion. In: Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute (1998) pp. 917–925.

  10. Wenzel, H., Direkte Numerische Simulation der Ausbreitung einer Flammenfront in einem homogenen Turbulenzfeld. Ph.D. Thesis, Aachen (2000).

  11. Vervisch, P., Domingo, R. and Haugel, Turbulent combustion in the light of direct and large eddy simulations. J. Turbul. 5(1) (2004) 4–4(1).

  12. Pitsch, H. and Duchamp de Lageneste, L., Large-Eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29 (2002) 2001–2008.

    Google Scholar 

  13. Hawkes, E.R. and Cant, S.R., A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28 (2000) 51–58.

    Google Scholar 

  14. Angelberger, C., Veynante, D., Egolfopoulos, F. and Poinsot, T., Large eddy simulation of combustion instabilities in turbulent premixed flames. In: Proceedings of the Summmer Program Center for Turbulence Research (1998) pp. 61–82.

  15. Colin, O., Ducros, F., Veynante, D. and Poinsot, T., A thickened flame model for large-eddy simulation of turbulent premixed combustion. Phys. Fluids A 12(7) (2000) 1843–1863.

    ADS  Google Scholar 

  16. Duessing, K.M., Large-Eddy Simulations Turbulenter Vormischflammen. Ph.D. Thesis, TU-Darmstadt (2004).

  17. Janicka, J. and Sadiki, A., Large eddy simulation of turbulent combustion systems. Pro. Combust. Inst. 30 (2005) 537–547.

    Google Scholar 

  18. Bray, K.N.C., Libby, P.A. and Moss, J.B., Unified modeling approach for premixed turbulent combustion. Part I: General formulation. Combust. Flame 61 (1985) 87–102.

    Article  Google Scholar 

  19. Lindstedt, R.P. and Vaos, E.M., Modeling of premixed turbulent flames with second moment methods. Combust. Flame 116 (1999) 461–485.

    Article  Google Scholar 

  20. Veynante, D., Trouve, A., Bray, K.N.C. and Mantel, T., Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332 (1997) 263–293.

    ADS  MATH  Google Scholar 

  21. Hermann, M., Numerical simulation of premixed turbulent combustion based on level-set flamelet model. Dissertation, RWTH Aachen (2001).

  22. Nilsson, P. and Bai, X.S., Effects of flame stretch and wrinkling on CO formation in turbulent premixed combustion. In: Twenty-Ninth Symposium (International) on Combustion, Vol. 29 (2002) pp. 1873–1879.

  23. Engdar, A., Klingmann, J. and Nilsson, P., Investigation of turbulence models applied to premixed combustion using a level-set flamelet library approach. In: ASME 2003, GT2003-38331.

  24. Repp, S., Khvissiouk, E., Sadiki, A. and Janicka, J., Modeling and simulation of a turbulent premixed methane/air flame based on the G-equation. In: Proceedings of ASME Turbo Expo 2002, Amsterdam, Netherlands (2002).

  25. Maltsev, A., Sadiki, A. and Janicka, J., A new BML-based modeling for the description of gas turbine typical combustion process. Prog. Comput. Fluid Dyn. (2004) (in press).

  26. Maltsev, A., Sadiki, A. and Janicka, J., Coupling of extended BML model and advanced turbulence and mixing models in predicting partially premixed flames. In: Third International Symposium on Turbulence and Shear Flow Phenomena, TSFP3, Sendai, Japan, June 25–27, 2003, vol. 1, pp. 4–4(1).

  27. Landenfeld, T., Sadiki, A. and Janicka, J., A turbulence-chemistry interaction model based on a multivariate presumed β-PDF method for turbulent flames. Flow Turbul. Combust. 68 (2002) 111–135.

    MATH  Google Scholar 

  28. Sussman, M., Smereka, P. and Osher, S., A level set approach for computing solution to incompressible two-phase flow. J. Comp. Phys. 114 (1994) 146–159.

    ADS  MATH  Google Scholar 

  29. Nilsson, P. and Bai, X.S., Level-set flamelet library approach for premixed turbulent combustion. Exp. Therm. Fluid. Sci. 21 (2000) 87–98.

    Article  Google Scholar 

  30. Landenfeld, T., Sadiki, A. and Janicka, J., A turbulence-chemistry interaction model based on a multivariate presumed β-PDF method for turbulent flames. Flow Turbul. Combust. 68 (2002) 111–135.

    MATH  Google Scholar 

  31. Schmidt, D., Segatz, J., Riedel, U., Warnatz, J. and Maas, U., Simulation of laminar methane-air flame using automatically simplified chemical kinetics. Combust. Sci. Tech. 113–114 (1996) 3–16.

    Google Scholar 

  32. Launder, B.E. and Spalding, D.B., Mathematical Models of Turbulence. Academic Press, London, NY (1972).

    MATH  Google Scholar 

  33. Maltsev, A., Towards the Development and Assessment of Complete CFD Models for the Silulation of Stationary Gas Turbine Combustion Processes. Dissertation, TU-Darmstadt (2003).

  34. Russo, G. and Smereka, P., A remark on computing distance function. Phys. Fluids 12(1).

  35. Maas, U. and Pope, S.B., Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (1992) 239–264.

    Article  Google Scholar 

  36. Janicka, J., Habilitationsschrift, RWTH Aachen (1984).

  37. Durst, F. and Schäfer, M., A parallel blockstructured multigrid method for the prediction of incompressible flow. J. Numer. Meth. Fluids 22 (1996) 549–565.

    MATH  Google Scholar 

  38. Chen, M., Hermann, M. and Peters, N., Proc. Combust. Inst. 26 (2000) 167–174.

  39. Repp, S., Hinz, A., Landenfeld, T., Schneider, C., Sadiki, A. and Janicka, J., Prediction of swirling confined diffusion flame with a Monte Carlo and a presumed PDF-model. Int. J. Heat Mass Transf. 45 (2002) 1271–1285.

    Article  MATH  Google Scholar 

  40. Janicka, J. and Kollmann, W., The calculation of mean radical concentrations in turbulent diffusion flames. Combust. Flame 44 (1982) 319–336.

    Article  Google Scholar 

  41. Girimaji, S.S., Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing. Combust. Sci. Technol. 78 (1991) 177–196.

    Google Scholar 

  42. Knikker, R., Veynante, D. and Meneveau, C., A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion. Proc. Combust. Inst. 29 (2000) 2105–2111.

    Google Scholar 

  43. Nottin, C., Knikker, R., Borger, M. and Veynante, D., Large eddy simulations of an acoustically excited turbulent premixed flame. Proc. Combust. Inst. 28 (2000) 67–73.

    Article  Google Scholar 

  44. Zimont, V.L., Biagioli, F. and Syed, K., Modeling turbulent combustion in the intermediate steady propagation regime. Prog. Comput. Fluid Dyn. 1(1/2/3) (2001) 14–28.

    Google Scholar 

  45. Peters, N., Laminar flame concept in turbulent combustion. In: Twenty-First Symposium (International) on Combustion, The Combustion Institute (1986) pp. 1231–1250.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, E., Sadiki, A. & Janicka, J. Modeling and 3D-Simulation of the Kinetic Effects in the Post-Flame Region of Turbulent Premixed Flames Based on the G-Equation Approach. Flow Turbulence Combust 75, 191–216 (2005). https://doi.org/10.1007/s10494-005-8588-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-005-8588-z

Key Words

Navigation