Skip to main content
Log in

Effects of heat stress on development, reproduction and activities of protective enzymes in Mononychellus mcgregori

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Mononychellus mcgregori is a pest mite of cassava. Since its invasion into China in 2008 it has spread rapidly. In order to determine the potential distribution and to analyze its invasion, diffusion and ecological adaptation mechanisms, we investigated the effect of high-temperature stress (30, 33, 36, 39 and 42 °C) on its development and reproduction, and the activity of protective enzymes in the mite. The results indicated significant influences: (1) adults could not lay eggs after they had been exposed to 42 °C for 4 h or longer; (2) egg development was slower and egg hatchability decreased after exposure of adults to 33–42 °C for 1 h; (3) offspring development (all stages) was slower after exposure of adults to 33–42 °C for 2 h or more; and (4) polyphenol oxidase (PPO), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT) activities in the adults increased to high levels after exposure to 33–42 °C for 1 h, and superoxide dismutase activity increased only after exposure to 42 °C for 1 h. In conclusion, exposure to high temperatures for only 1 h probably has an important impact on the mite’s population growth. The significant increase of PPO, POD, APX, and CAT activities in adults may partially explain how M. mcgregori survive exposure to a relatively high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philos Trans R Soc Lond Ser B 357:849–862

    Article  CAS  Google Scholar 

  • Bellotti A, Schoonhoven A (1978) Mite and insect pests of cassava. Ann Rev Entomol 23:39–67

    Article  CAS  Google Scholar 

  • Bellotti A, Campo BVH, Hyman G (2012) Cassava production and pest management: present and potential threats in a changing environment. Trop Plant Biol 5:39–72

    Article  Google Scholar 

  • Boyne JV, Hain FP (1983) Effects of constant temperature, relative humidity, and simulated rainfall on development and survival of the spruce spider mite (Oligonychus ununguis). Can Entomol 115:93–105

    Article  Google Scholar 

  • Chen Q (2002) Biochemical basis on capsicum resistance to aphid and RAPD analysis. Dissertation, University of Hainan

  • Chen B, Kang L (2005) Adaption and population differentiation to the environmental temperature stress for insects. Proc Natl Sci 15(3):265–271

    Google Scholar 

  • Chen Q, Lu FP, Huang GX, Li KM, Ye JQ, Zhang ZW (2010) General Survey and safety assessment of Cassava pests. Chin J Trop Crops 31(5):819–827

    Google Scholar 

  • Cicek N, Cakirlar H (2008) Changes in some antioxidant enzyme activities in six soybean cultivars in response to long-term salinity at two different temperatures. Gen Appl Plant Physiol 34(3–4):267–280

    CAS  Google Scholar 

  • Cui XH, Wan FH, Xie M, Liu TX (2008) Effects of Heat shock on survival and fecundity of two whitefly species: Trialeurodes vaporariorum and Bemisia tabaci B biotype (Homoptera: Aleyrodidae). J Insect Sci 8:24

    Article  PubMed Central  Google Scholar 

  • Du Y, Ma CS, Zhao QH (2007) Effects of heat stress on physiological and biochemical mechanism s of insects: a literature review. Acta Ecol Sin 27(4):1565–1572

    CAS  Google Scholar 

  • Emmert CJ, Mizell RF III, Andersen PC, Frank JH, Stimac JL (2008) Effects of contrasting diets and temperatures on reproduction and prey consumption by Proprioseiopsis asetus (Acari: Phytoseiidae). Exp Appl Acarol 44:11–26

    Article  PubMed  Google Scholar 

  • Feng HZ, Liu YH, He L, Yang DX, Ii M, Lu WC (2008) Heat shock response and HSPs of Tetranychus cinnabarinus (Acari:Tetranychidae) resistant to avermectin. Acta Entomol Sin 51(11):1164–1169

    CAS  Google Scholar 

  • Filipe DT, Domenico O (2011) Cold-stress response of engorged females of Rhipicephalus sanguineus. Exp Appl Acarol 54:313–318

    Article  Google Scholar 

  • Gadino AN, Walton VM (2012) Temperature-related development and population parameters for Typhlodromus pyri (Acari: Phytoseiidae) found in Oregon vineyards. Exp Appl Acarol 58:1–10

    Article  PubMed  Google Scholar 

  • Ganjisaffar F, Fathipour Y, Kamali K (2011) Temperature-dependent development and life table parameters of Typhlodromus bagdasarjani (Phytoseiidae) fed on two-spotted spider mite. Exp Appl Acarol 55:259–272

    Article  PubMed  Google Scholar 

  • Gotoh T, Sugimoto N, Pallini A, Knapp M, Hernandez-Suarez E, Ferragut F, Ho C-C, Migeon A, Navajas M, Nachman G (2010) Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures. Exp Appl Acarol 52:239–259

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez J (1987) The cassava green mite in Africa: one or two species? (Acari: Tetranychidae). Exp Appl Acarol 3:163–168

    Article  Google Scholar 

  • He L, Zhao ZM, Cao XF (2005) Effect of temperature on development and fecundity of resistant Tetranychus cinnabarinus (Boiduval). Acta Entomol Sin 48(2):203–207

    Google Scholar 

  • Hoffmann KH (1985) Metabolic and enzyme adaptation to temperature. In: Hoffmann KH (ed) Environmental physiology and biochemistry of insects. Springer, Berlin, pp 1–2

    Chapter  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nat Biotechnol 470:479–485

    CAS  Google Scholar 

  • Hoffmann AA, Dagher H, Hercus M, Berrigan D (1997) Comparing different measures of heat resistance in selected lines of Drosophila melanogaster. J Insect Physiol 43(4):393–405

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Sorensen JG, Loeseheke V (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Thermal Biol 28:175–216

    Article  Google Scholar 

  • Jafari S, Fathipour Y, Faraji F (2012) Temperature-dependent development of Neoseiulus barkeri (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae) at seven constant temperatures. Insect Sci 19:220–228

    Article  Google Scholar 

  • Jin HL, Chen Q, Jin QA, Tang C, Wen HB, Peng ZQ (2010) Effects of heat stress on the development and fecundity of Asecodes hispinarum (Boucěk). Chin J Trop Crops 31(4):631–635

    Google Scholar 

  • Kimura MT, Ohtsu T, Yoshida T, Awasaki T, Lin FJ (1994) Climatic adaptations and distributions in the Drosophila takahashii species-subgroup (Diptera: Drosophilidae). J Nat Hist 28:401–409

    Article  Google Scholar 

  • Li YL, Zhang Y (2000) SOD activity measurement with Pyrogallol auto-oxidation assay. Chin J Health Lab Tech 6:673

    Google Scholar 

  • Li HJ, Liu YH, Liu HQ (2009) Effect of high point temperature on the development of Amblyseius nicholsi. Chin J Bio Cont 25(supplement 1):1–5

    Google Scholar 

  • Li DX, Zhang XN, Yang YL, Zhu HW (2010a) Effects of high temperature shocks on hawthorn spider mite, Tetranychus viennensis Zacher. Acta Ecol Sin 30(16):4437–4444

    Google Scholar 

  • Li ZM, Chen Q, Jin QiA, Tang C, Wen HB, Peng ZQ (2010b) Effect of high temperature on the protective enzymes of Tetrastichus brontispae. Chin J Trop Crops 31(6):994–998

    Google Scholar 

  • Liu CM (2006) Effects of temperatures on survival rate and protection enzymes of Tenebrio molitor larva. J Northwest For Univ 21(1):107–109

    CAS  Google Scholar 

  • Liu CM, Ma JQ (2007) Effects of different temperatures on cultivating and protection enzymes of Polyrhachis dives. J Xuzhou Norm Univ Nat Sci Ed 25(1):72–74

    CAS  Google Scholar 

  • Lu FP, Fu YG, Huang GX, Huang YR, Xu XL, Lu H, Chen Q (2011) Effect of temperature on the development and reproduction of cassava green mite Mononychellus tanajoa. Chin J Trop Crops 32(9):1720–1724

    Google Scholar 

  • Lu H, Ma QF, Chen Q, Lu FP, Xu XL (2012) Potential geographic distribution of the cassava green mite Mononychellus tanajoa in Hainan, China. Afr J Agr Res 7(7):1206–1213

    Google Scholar 

  • Luo J, Zhang XX, Zhai BP, Guo YR, Zhu JH (2005) Effect of high temperature on the growth, survival and reproduction of a laboratory population of the rice stem borer, Chilo suppressalis Walker. Acta Ecol Sin 25(4):931–936

    Google Scholar 

  • Michael LY, Whiting DC (1996) Response of ‘Hayward’ kiwifruit to high-temperature controlled atmosphere treatments for control of two-spotted spider mite (Tetranychus urticae). Postharvest Biol Technol 7:73–81

    Article  Google Scholar 

  • Perring TM, Holtzer TO, Kalisch JA, Norman JM (1984) Temperature and humidity effects on ovipositional rates, fecundity, and longevity of adult female Banks grass mites (Acari: Tetranychidae). Ann Entomol Soc Am 77:581–586

    Google Scholar 

  • Sorensen JG, Dahlgaard J, Loeschcke V (2001) Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp70 expression and variation in heat stress resistance traits. Funct Ecol 15(3):289–296

    Article  Google Scholar 

  • Stanley SM, Parsons PA, Spence GE et al (1980) Resistance of species of the Drosophila melanogaster subgroup to environmental extremes. Aust J Zool 28:413–421

    Article  Google Scholar 

  • Ullah MS, Moriya D, Badii MH, Nachman G, Gotoh T (2011) A comparative study of development and demographic parameters of Tetranychus merganser and Tetranychus kanzawai (Acari: Tetranychidae) at different temperatures. Exp Appl Acarol 54:1–19

    Article  CAS  PubMed  Google Scholar 

  • Ullah MS, Haque MA, Nachman GS, Gotoh T (2012) Temperature-dependent development and reproductive traits of Tetranychus macfarlanei (Acari: Tetranychidae). Exp Appl Acarol 56:327–344

    Article  PubMed  Google Scholar 

  • Wang M, Li ZZ (2002) Studies on the activities of enzymes of protective system during diapause of sawfly Chinolyda flagellicorni. Forest Sci 38(4):100–104

    Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580

    Article  Google Scholar 

  • Yang LH, Huang H, Wang JJ (2010) Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Aeari: Tetranyehidae), exposed to thermal Stress. J Insect Ph 56:1871–1876

    Article  CAS  Google Scholar 

  • Yaninek JS, Herren HR (1988) Introduction and spread of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae), an exotic pest in Africa and the search for appropriate control methods: a review. Bull Entomol Res 78:1–13

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Chen Bai, Environment and Plant Protection Institute, China Academy of Tropical Agriculture Sciences, for his kind help on the English style improving of this manuscript. This research was supported by the Special Fund for Modern Agricultural Technology System Fund (CARS-12-hncq); the Central-level Public Welfare Research Institutes for Basic R & D Operations (No.2011hzs1J014, NO.2009hzs1J013, NO.2012hzs1J024); The Fundamental Research Funds for Rubber Research Institute, CATAS (1630022013008, 1630022014007); The Fundamental Scientific Research Funds for Chinese Academy of Tropical Agricultural Sciences (Project No. 1630022013030); Ministry of Agriculture Opening Project Fund of Key Laboratory of Rubber Biology and Genetic Resource Utilization/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops (RRI-KLOF1302); Science and Technology Program Project of Hainan Province (ZDXM20110032); Special Fund for Agro-scientific Research in the Public Interest (200903034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Chen.

Additional information

Fuping Lu and Qing Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, F., Chen, Q., Chen, Z. et al. Effects of heat stress on development, reproduction and activities of protective enzymes in Mononychellus mcgregori . Exp Appl Acarol 63, 267–284 (2014). https://doi.org/10.1007/s10493-014-9784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9784-0

Keywords

Navigation