Skip to main content
Log in

Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuska, J. Osborn: Eigenvalue problems. Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part I) (P. G. Ciarlet, J. L. Lions, eds.). North-Holland Publ., Amsterdam, 1991, pp. 641–787.

    Google Scholar 

  2. M. Bercovier, O. Pironneau: Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979), 211–224.

    Article  MathSciNet  Google Scholar 

  3. P. E. Bjorstad, B. P. Tjostheim: High precision solutions of two fourth order eigenvalue problems. Computing 63 (1999), 97–107.

    MathSciNet  Google Scholar 

  4. D. Boffi, F. Brezzi, and L. Gastaldi: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69 (2000), 121–140.

    MathSciNet  Google Scholar 

  5. D. Boffi, F. Brezzi, and L. Gastaldi: On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25 (1997), 131–154.

    MathSciNet  Google Scholar 

  6. F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol. 15. Springer-Verlag, New York, 1991.

    Google Scholar 

  7. B. M. Brown, E. B. Davies, P. K. Jimack, and M. D. Mihajlovic: A numerical investigation of the solution of a class of fourth-order eigenvalue problems. Proc. R. Soc. Lond. A 456 (2000), 1505–1521.

    MathSciNet  Google Scholar 

  8. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland Publ., Amsterdam, 1978.

    Google Scholar 

  9. P. G. Ciarlet, P.-A. Raviart: A mixed finite element method for the biharmonic equation. Aspects finite Elem. partial Differ. Equat., Proc. Symp. Madison (C. de Boor, ed.). Academic Press, New York, 1974, pp. 125–145.

    Google Scholar 

  10. V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  11. R. Glowinski, O. Pironneau: On a mixed finite element approximation of the Stokes problem. I: Convergence of the approximate solution. Numer. Math. 33 (1979), 397–424.

    Article  MathSciNet  Google Scholar 

  12. V. Heuveline, R. Rannacher: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001), 107–138.

    Article  MathSciNet  Google Scholar 

  13. Q. Hu, J. Zou: Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems. Numer. Math. 93 (2002), 333–359.

    Article  MathSciNet  Google Scholar 

  14. K. Ishihara: A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 399–414.

    MATH  MathSciNet  Google Scholar 

  15. M. Krizek: Comforming finite element approximation of the Stokes problem. Banach Cent. Publ. 24 (1990), 389–396.

    Google Scholar 

  16. M. Krizek, P. Neittaanmaki: On superconvergence techniques. Acta Appl. Math. 9 (1987), 175–198.

    MathSciNet  Google Scholar 

  17. Q. Lin, J. Lin: Finite Element Methods: Accuracy and Improvement. China Sci. Tech. Press, Beijing, 2005.

    Google Scholar 

  18. Q. Lin, T. Lu: Asymptotic expansions for finite element eigenvalues and finite element solution. Bonn Math. Schr. 158 (1984), 1–10.

    MathSciNet  Google Scholar 

  19. Q. Lin, N. Yan: High Efficiency FEM Construction and Analysis. Hebei Univ. Press, 1996.

  20. B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36 (1981), 427–453.

    MathSciNet  Google Scholar 

  21. J. Osborn: Spectral approximation for compact operators. Math. Comput. 29 (1975), 712–725.

    MATH  MathSciNet  Google Scholar 

  22. J. Osborn: Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976), 185–197.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Rannacher, S. Turek: Simple noncomforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equations 8 (1992), 97–111.

    MathSciNet  Google Scholar 

  24. R. Rannacher: Noncomforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33 (1979), 23–42.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Stenberg: Postprocess schemes for some mixed finite elements. RAIRO Modelisation Math. Anal. Numer. 25 (1991), 151–168.

    MATH  MathSciNet  Google Scholar 

  26. R. Verfurth: Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO, Anal. Numer. 18 (1984), 175–182.

    MathSciNet  Google Scholar 

  27. J. Wang, X. Ye: Superconvergence of finite element approximations for the Stokes problem by the projection methods. SIAM J. Numer. Anal. 39 (2001), 1001–1013.

    MathSciNet  Google Scholar 

  28. C. Wieners: Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing 59 (1997), 29–41.

    MATH  MathSciNet  Google Scholar 

  29. J. Xu, A. Zhou: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70 (2001), 17–25.

    MathSciNet  Google Scholar 

  30. X. Ye: Superconvergence of nonconforming finite element method for the Stokes equations. Numer. Methods Partial Differ. Equations 18 (2002), 143–154.

    MATH  Google Scholar 

  31. A. Zhou, J. Li: The full approximation accuracy for the stream function-vorticity-pressure method. Numer. Math. 68 (1994), 427–435.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author was supported by China Postdoctoral Sciences Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Lin, Q. Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method. Appl Math 51, 73–88 (2006). https://doi.org/10.1007/s10492-006-0006-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-006-0006-x

Keywords

Navigation