Skip to main content
Log in

An enhanced seagull optimization algorithm for solving engineering optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The seagull optimization algorithm (SOA) is a recently proposed meta-heuristic optimization algorithm inspired by seagull foraging behavior. It has the advantages of simple structure and easy implementation. However, it also has some shortcomings, such as easily falling into local optimal and low convergence accuracy when solving complex engineering optimization problems. In this paper, to overcome the defects of the original SOA, an enhanced seagull optimization algorithm (ESOA) based on mutualism mechanism and commensalism mechanism is proposed. To evaluate the performance of the ESOA algorithm, the IEEE CEC2020 benchmark suite is utilized to verify the effectiveness of the ESOA algorithm, and the results are compared and analyzed with the latest meta-heuristic optimization algorithms. In addition, the ESOA algorithm is applied to twelve different types of engineering optimization problems, including pressure vessel design problem, multiple disc clutch brake design problem, three bar truss design problem, car crashworthiness problem, cantilever beam problem, abrasive water jet machine, gas transmission compressor design problem, hydro-static thrust bearing design problem, speed reducer problem, tubular column design problem, I beam design problem and industrial refrigeration system design problem. The convergence curves of ESOA and the comparison results of the latest metaheuristic algorithms are analyzed and compared with those reported in the latest literature. The results show that the ESOA algorithm is an optimization method that can find the optimal solution in engineering design problems, and has strong competitiveness compared with other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Katebi J, Shoaei-parchin M, Shariati M et al (2020) Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Eng Comput 36:1539–1558. https://doi.org/10.1007/s00366-019-00780-7

    Article  Google Scholar 

  2. Hnga B, Kj A (2020) Dynamic differential annealed optimization: new metaheuristic optimization algorithm for engineering applications. Appl Soft Comput 93:106392. https://doi.org/10.1016/J.ASOC.2020.106392

    Article  Google Scholar 

  3. Shadravan S, Naji HR, Bardsiri VK (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/J.ENGAPPAI.2019.01.001

    Article  Google Scholar 

  4. Shabani A, Asgarian B, Salido MA, Gharebaghi SA (2020) Search and rescue optimization algorithm: a new optimization method for solving constrained engineering optimization problems. Expert Syst Appl 161:113698. https://doi.org/10.1016/J.ESWA.2020.113698

    Article  Google Scholar 

  5. Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63(5):511–623. https://doi.org/10.1007/BF02125421

    Article  MATH  Google Scholar 

  6. Torres-Jiménez J, Pavón J (2014) Applications of metaheuristics in real-life problems. Prog Artif Intell 2(4):175–176. https://doi.org/10.1007/S13748-014-0051-8

    Article  Google Scholar 

  7. Ozsoydan FB, Baykasoglu A (2019) A swarm intelligence-based algorithm for the set-union knapsack problem. Futur Gener Comput Syst 93:560–569. https://doi.org/10.1016/j.future.2018.08.002

    Article  Google Scholar 

  8. Azizyan G, Miarnaeimi F, Rashki M, Shabakhty N (2019) Flying squirrel optimizer (FSO): a novel SI-based optimization algorithm for engineering problems. Iran J Optim 11:177–205

    Google Scholar 

  9. Kalananda VKRA, Komanapalli VLN (2021) A combinatorial social group whale optimization algorithm for numerical and engineering optimization problems. Appl Soft Comput 99:106903. https://doi.org/10.1016/J.ASOC.2020.106903

    Article  Google Scholar 

  10. Bhargava V, Fateen S-EK, Bonilla-Petriciolet A (2013) Cuckoo search: a new nature-inspired optimization method for phase equilibrium calculations. Fluid Phase Equilib 337:191–200. https://doi.org/10.1016/J.FLUID.2012.09.018

    Article  Google Scholar 

  11. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization Swarm Intell 1:33–57. https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  12. Yang X, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483. https://doi.org/10.1108/02644401211235834

    Article  Google Scholar 

  13. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95(95):51–67. https://doi.org/10.1016/J.ADVENGSOFT.2016.01.008

    Article  Google Scholar 

  14. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/J.COMPSTRUC.2016.03.001

    Article  Google Scholar 

  15. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007

    Article  Google Scholar 

  16. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175. https://doi.org/10.1016/J.SWEVO.2018.02.013

    Article  Google Scholar 

  17. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377. https://doi.org/10.1016/J.ESWA.2020.113377

    Article  Google Scholar 

  18. Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl 149:113338. https://doi.org/10.1016/J.ESWA.2020.113338

    Article  Google Scholar 

  19. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99. https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  20. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  21. Kirkpatrick S, Gelatt CD, Vecchi MP (1987) Optimization by simulated annealing. Neurocomputing: foundations of research. Morgan Kaufmann, San Francisco

  22. Anita YA (2019) AEFA: artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108. https://doi.org/10.1016/J.SWEVO.2019.03.013

    Article  Google Scholar 

  23. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(3638):3902–3933. https://doi.org/10.1016/J.CMA.2004.09.007

    Article  MATH  Google Scholar 

  24. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/J.INS.2009.03.004

    Article  MATH  Google Scholar 

  25. Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37(2):106–111. https://doi.org/10.1016/J.ADVENGSOFT.2005.04.005

    Article  Google Scholar 

  26. Bayraktar Z, Komurcu M, Werner DH (2010) Wind driven optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. In: 2010 IEEE antennas and propagation society international symposium, 2010. (pp. 1–4). IEEE

  27. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110(1):151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  28. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Design 43(3):303–315. https://doi.org/10.1016/J.CAD.2010.12.015

    Article  Google Scholar 

  29. Hong G, Mao ZY (2002) Immune algorithm. In: proceedings of the 4th world congress on intelligent control and automation, 2002, pp. 1784-1788 vol.3, https://doi.org/10.1109/WCICA.2002.1021389

  30. Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput 64:161–185. https://doi.org/10.1016/J.ASOC.2017.11.043

    Article  Google Scholar 

  31. Su R, Gui L, Fan Z (2009) Topology and sizing optimization of truss structures using adaptive genetic algorithm with node matrix encoding. Fifth International Conference on Natural Computation, IEEE

  32. Audoux Y, Montemurro M, Pailhès J (2020) A Metamodel based on non-uniform rational basis spline hyper-surfaces for optimisation of composite structures. Compos Struct 247:112439. https://doi.org/10.1016/J.COMPSTRUCT.2020.112439

    Article  MATH  Google Scholar 

  33. Juang C-F (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern B Cybern 34(2):997–1006. https://doi.org/10.1109/TSMCB.2003.818557

    Article  Google Scholar 

  34. Minh H-L, Khatir S, Wahab MA, Cuong-Le T (2021) An enhancing particle swarm optimization algorithm (EHVPSO) for damage identification in 3D transmission tower. Eng Struct 242:112412. https://doi.org/10.1016/J.ENGSTRUCT.2021.112412

    Article  Google Scholar 

  35. Kanusu SR, Mandapati S (2021) A hybrid population based incremental learning algorithm with particle swarm optimization for general threshold visual cryptography schemes. Mater Today Proc https://doi.org/10.1016/J.MATPR.2020.12.1127

  36. Zhao Y, Wang T, Qin W, Zhang X (2018) Improved Rao-Blackwellised particle filter based on randomly weighted particle swarm optimization. Comput Electr Eng 71:477–484. https://doi.org/10.1016/J.COMPELECENG.2018.07.055

    Article  Google Scholar 

  37. Askari Q, Younas I (2021) Improved political optimizer for complex landscapes and engineering optimization problems. Expert Syst Appl 182:115178. https://doi.org/10.1016/J.ESWA.2021.115178

    Article  Google Scholar 

  38. Nadimi-Shahraki M-H, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 166:113917. https://doi.org/10.1016/J.ESWA.2020.113917

    Article  Google Scholar 

  39. Omran MGH, Al-Sharhan S (2019) Improved continuous ant Colony optimization algorithms for real-world engineering optimization problems. Eng Appl Artif Intell 85:818–829. https://doi.org/10.1016/J.ENGAPPAI.2019.08.009

    Article  Google Scholar 

  40. Kar D, Ghosh M, Guha R, Sarkar R, Garcia-Hernandez L, Abraham A (2020) Fuzzy mutation embedded hybrids of gravitational search and particle swarm optimization methods for engineering design problems. Eng Appl Artif Intell 95:103847. https://doi.org/10.1016/J.ENGAPPAI.2020.103847

    Article  Google Scholar 

  41. Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evol 9(2):126–142. https://doi.org/10.1109/TEVC.2005.843751

    Article  Google Scholar 

  42. Olorunda O, Engelbrecht AP (2008) Measuring exploration/exploitation in particle swarms using swarm diversity. In: IEEE Congr Evolut Comput 2008, pp. 1128–1134

  43. Lozano M, García-Martínez C (2010) Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report. Comput Oper Res 37(3):481–497. https://doi.org/10.1016/J.COR.2009.02.010

    Article  MathSciNet  MATH  Google Scholar 

  44. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196. https://doi.org/10.1016/J.KNOSYS.2018.11.024

    Article  Google Scholar 

  45. Muthubalaji S, Srinivasan S, Lakshmanan M (2021) IoT based energy management in smart energy system: a hybrid SO2SA technique. Int J Numer Model https://doi.org/10.1002/JNM.2893

  46. Turgut MS, Eliiyi U, Turgut OE, Öner E, Eliiyi DT (2021) Artificial intelligence approaches to estimate the transport energy demand in Turkey. Arab J Sci Eng 46(3):2443–2476. https://doi.org/10.1007/S13369-020-05108-Y

    Article  Google Scholar 

  47. Dhiman G, Singh KK, Slowik A, Chang V, Yildiz AR, Kaur A, Garg M (2021) EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization. Int J Mach Learn Cybern 12(2):571–596. https://doi.org/10.1007/S13042-020-01189-1

    Article  Google Scholar 

  48. Jia H, Xing Z, Song W (2019) A new hybrid seagull optimization algorithm for feature selection. IEEE Access 7:49614–49631. https://doi.org/10.1109/ACCESS.2019.2909945

    Article  Google Scholar 

  49. Panagant N, Pholdee N, Bureerat S, Yıldız AR, Sait SM (2020) Seagull optimization algorithm for solving real-world design optimization problems. Mtaer Test 62(6):640–644. https://doi.org/10.3139/120.111529

    Article  Google Scholar 

  50. Cao Y, Li Y, Zhang G, Jermsittiparsert K, Razmjooy N (2019) Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm. Energy Rep 5:1616–1625. https://doi.org/10.1016/J.EGYR.2019.11.013

    Article  Google Scholar 

  51. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  52. Miao F, Yao L, Zhao X (2021) Evolving convolutional neural networks by symbiotic organisms search algorithm for image classification. Appl Soft Comput 109:107537. https://doi.org/10.1016/j.asoc.2021.107537

    Article  Google Scholar 

  53. Nama S, Kumar Saha A, Ghosh S (2017) A hybrid Symbiosis organisms search algorithm and its application to real world problems. Memetic Comp 9:261–280. https://doi.org/10.1007/s12293-016-0194-1

    Article  Google Scholar 

  54. Das S, Bhattacharya A (2016) Symbiotic organisms search algorithm for short-term hydrothermal scheduling. Ain Shams Eng J 9(4):499–516. https://doi.org/10.1016/J.ASEJ.2016.04.002

    Article  Google Scholar 

  55. Zainal NA, Azad S, Zamli KZ (2020) An adaptive fuzzy symbiotic organisms search algorithm and its applications. IEEE Access 8:225384–225406. https://doi.org/10.1109/ACCESS.2020.3042196

    Article  Google Scholar 

  56. Nama S, Saha AK, Sharma S (2020) A novel improved symbiotic organisms search algorithm. Comput Intell https://doi.org/10.1111/coin.12290

  57. Do DTT, Lee J (2017) A modified symbiotic organisms search (mSOS) algorithm for optimization of pin-jointed structures. Appl Soft Comput 61:683–699. https://doi.org/10.1016/J.ASOC.2017.08.002

    Article  Google Scholar 

  58. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  59. Askari Q, Younas I, Saeed M (2020) Political optimizer: a novel socio-inspired meta-heuristic for global optimization. Knowledge-Based Syst 195:105709. https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  60. Askari Q, Saeed M, Younas I (2020) Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl 161:113702. https://doi.org/10.1016/j.eswa.2020.113702

    Article  Google Scholar 

  61. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(6):735–748. https://doi.org/10.1080/03052150108940941

    Article  Google Scholar 

  62. Gu L, Yang RJ, Tho CH, Makowskit M, Faruquet O, Li Y (2001) Optimization and robustness for crashworthiness of side impact. Int J Veh Des 26(4):348–360. https://doi.org/10.1504/IJVD.2001.005210

    Article  Google Scholar 

  63. Bhadoria A, Kamboj VK (2019) Optimal generation scheduling and dispatch of thermal generating units considering impact of wind penetration using hGWO-RES algorithm. Appl Intell https://doi.org/10.1007/s10489-018-1325-9

  64. Rao RV, Kalyankar VD (2013) Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Eng Appl Artif Intell 26(1):524–531. https://doi.org/10.1016/J.ENGAPPAI.2012.06.007

    Article  Google Scholar 

  65. Glass MH, Mitsos A (2019) Parameter estimation in reactive systems subject to sufficient criteria for thermodynamic stability. Chem Eng Sci 197:420–431. https://doi.org/10.1016/J.CES.2018.08.035

    Article  Google Scholar 

  66. Siddall JN (1982) Optimal engineering design: principles and applications, CRC Press

  67. Sadollah A et al (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612. https://doi.org/10.1016/J.ASOC.2012.11.026

    Article  Google Scholar 

  68. Rao SS (1996) Engineering optimization: theory and practice, 3rd edn. Wiley, Chichester

  69. Gold S, Krishnamurty S (1997) Trade-offs in robust engineering design. In: Paper presented at the proceeding of the 1997 ASME design engineering technical conferences, Sacramento

  70. Andrei N (2013) Nonlinear optimization applications using the GAMS technology. Springer, Incorporated

  71. Hansen, N, Auger A (2011) CMA-ES: evolution strategies and covariance matrix adaptation. Conference Companion on Genetic & Evolutionary Computation. ACM, Dublin

  72. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Syst 96(96):120–133. https://doi.org/10.1016/J.KNOSYS.2015.12.022

    Article  Google Scholar 

  73. Abhishek Gupta (2021) Hybrid GWOPSO optimization (https://www.mathworks.com/matlabcentral/fileexchange/68776-hybrid-gwopso-optimization), MATLAB Central File Exchange. Retrieved November 7, 2021

  74. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541. https://doi.org/10.1016/J.ENGAPPAI.2020.103541

    Article  Google Scholar 

  75. Che Y, He D (2021) A hybrid whale optimization with seagull algorithm for global optimization problems. Math Probl Eng 2021:1–31. https://doi.org/10.1155/2021/6639671

    Article  Google Scholar 

  76. Tang C, Zhou Y, Luo Q, Tang Z (2021) An enhanced pathfinder algorithm for engineering optimization problems. Eng Comput 1-23. https://doi.org/10.1007/S00366-021-01286-X

  77. Tang C, Zhou Y, Tang Z, Luo Q (2021) Teaching-learning-based pathfinder algorithm for function and engineering optimization problems. Appl Intell 51:5040–5066. https://doi.org/10.1007/s10489-020-02071-x

    Article  Google Scholar 

  78. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  Google Scholar 

  79. Krishna AB, Saxena S, Kamboj VK (2021) HSMA-PS: a novel memetic approach for numerical and engineering design challenges. Eng Comput https://doi.org/10.1007/s00366-021-01371-1

  80. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify Harris hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput J 89:106018. https://doi.org/10.1016/j.asoc.2019.106018

    Article  Google Scholar 

  81. Le-Duc T, Nguyen QH, Nguyen-Xuan H (2020) Balancing composite motion optimization. Inf Sci (Ny) 520:250–270. https://doi.org/10.1016/j.ins.2020.02.013

    Article  MathSciNet  Google Scholar 

  82. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  83. Pu SA, Hao LB, Yong ZA, Lt B, Qm A (2021) An intensify atom search optimization for engineering design problems. Appl Math Model 89:837–859. https://doi.org/10.1016/j.apm.2020.07.052

    Article  Google Scholar 

  84. Abualigah L, Diabat A, Mirjalili S, Elaziz MA, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  85. Poap D, Woniak M (2021) Red fox optimization algorithm. Expert Syst Appl 166(10):114107. https://doi.org/10.1016/j.eswa.2020.114107

    Article  Google Scholar 

  86. Nadimi-Shahraki MH, Taghian S, Mirjalili S (2020) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 166:113917. https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  87. Dong WA, Zwa B, Lei SA, Chao TA (2021) Preaching-inspired swarm intelligence algorithm and its applications. Knowledge-Based Syst 211:106552. https://doi.org/10.1016/j.knosys.2020.106552

    Article  Google Scholar 

  88. Hashim FA, Hussain K, Houssein EH, Mai SM, Al-Atabany W (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51:1531–1551. https://doi.org/10.1007/s10489-020-01893-z

    Article  MATH  Google Scholar 

  89. Faramarzi A, Heidarinejad M, Stephens BE, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowledge-Based Syst 191:105190. https://doi.org/10.1016/J.KNOSYS.2019.105190

    Article  Google Scholar 

  90. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Design 116(2):405–411. https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

  91. Zhong K, Luo Q, Zhou Y, Jiang M (2021) TLMPA: teaching-learning-based marine predators algorithm. AIMS Math 6(2):1395–1442. https://doi.org/10.3934/math.2021087

    Article  MathSciNet  MATH  Google Scholar 

  92. Thirugnanasambandam K, Prakash S, Subramanian V, Pothula S, Thirumal V (2019) Reinforced cuckoo search algorithm-based multimodal optimization. Appl Intell 49(6):2059–2083. https://doi.org/10.1007/s10489-018-1355-3

    Article  Google Scholar 

  93. Assiri AS (2021) On the performance improvement of butterfly optimization approaches for global optimization and feature selection. PLoS One 16(1):e0242612. https://doi.org/10.1371/journal.pone.0242612

    Article  Google Scholar 

  94. Fan Q, Huang H, Chen Q, Yao L, Yang K, Huang D (2021) A modified self-adaptive marine predators algorithm: framework and engineering applications. Eng Comput https://doi.org/10.1007/S00366-021-01319-5

  95. Xu X, Hu Z, Su Q et al (2020) Multivariable grey prediction evolution algorithm: a new metaheuristic. Appl Soft Comput 89:106086. https://doi.org/10.1016/j.asoc.2020.106086

    Article  Google Scholar 

  96. Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80. https://doi.org/10.1016/j.engappai.2017.10.024

    Article  Google Scholar 

  97. Wang Z, Luo Q, Zhou Y (2020) Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems, no. 0123456789. Springer, London

  98. Talatahari S, Azizi M (2020) Optimization of constrained mathematical and engineering design problems using chaos game optimization. Comput Ind Eng 145:106560. https://doi.org/10.1016/j.cie.2020.106560

    Article  Google Scholar 

  99. Ferreira MP, Rocha ML, Silva Neto AJ, Sacco WF (2018) A constrained ITGO heuristic applied to engineering optimization. Expert Syst Appl 110:106–124. https://doi.org/10.1016/j.eswa.2018.05.027

    Article  Google Scholar 

  100. Yildiz BS, Pholdee N, Bureerat S et al (2021) Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng Comput https://doi.org/10.1007/s00366-021-01368-w

  101. Deb K, Pratap A, Moitra S (2000) Mechanical component design for multiple objectives using elitist non-dominated sorting ga. In: International Conference on parallel problem solving from nature, Springer, 2000, pp. 859–868

  102. Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model 40:3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  103. Singh RP, Mukherjee V, Ghoshal SP (2016) particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem. Appl Soft Comput 2016(40):161–177. https://doi.org/10.1016/j.asoc.2015.11.027

  104. Cheng Z, Song H, Wang J, Zhang H, Chang T, Zhang M (2021) Hybrid firefly algorithm with grouping attraction for constrained optimization problem. Knowledge-Based Syst 220:106937. https://doi.org/10.1016/j.knosys.2021.106937

    Article  Google Scholar 

  105. Migallón H, Jimeno-Morenilla A, Rico H, Sánchez-Romero JL, Belazi A (2021) Multi-level parallel chaotic Jaya optimization algorithms for solving constrained engineering design problems. J Supercomput 1-40. https://doi.org/10.1007/s11227-021-03737-0

  106. Gupta S, Deep K (2020) A memory-based Grey wolf optimizer for global optimization tasks. Appl Soft Comput 93:106367. https://doi.org/10.1016/J.ASOC.2020.106367

    Article  Google Scholar 

  107. Gupta S, Deep K (2019) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230. https://doi.org/10.1016/J.ESWA.2018.10.050

    Article  Google Scholar 

  108. Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59. https://doi.org/10.1016/j.apm.2019.02.004

    Article  MathSciNet  MATH  Google Scholar 

  109. Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523. https://doi.org/10.1016/J.INS.2018.11.041

    Article  Google Scholar 

  110. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  111. Hussien AG, Amin M (2021) A self-adaptive Harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int J Mach Learn 1-28. https://doi.org/10.1007/s13042-021-01326-4

  112. Zamani H, Nadimi-Shahraki MH, Gandomi AH (2019) Ccsa: conscious neighborhood-based crow search algorithm for solving global optimization problems. Appl Soft Comput 85:105583. https://doi.org/10.1016/j.asoc.2019.105583

    Article  Google Scholar 

  113. Mohammadi-Balani A, Nayeri MD, Azar A, Taghizadeh-Yazdi M (2021) Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Comput Ind Eng 152:107050. https://doi.org/10.1016/j.cie.2020.107050

    Article  Google Scholar 

  114. Naruei I, Keynia F (2021) Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems. Eng Comput 1-32. https://doi.org/10.1007/s00366-021-01438-z

  115. Tao R, Meng Z, Zhou H (2021) A self-adaptive strategy based firefly algorithm for constrained engineering design problems. Appl Soft Comput 107:107417. https://doi.org/10.1016/j.asoc.2021.107417

    Article  Google Scholar 

  116. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  117. Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y (2020) An improved moth-flame optimization algorithm with hybrid search phase. Knowledge-Based Syst https://doi.org/10.1016/j.knosys.2019.105277

  118. Chakraborty S, Saha AK, Sharma S, Mirjalili S, Chakraborty R (2021) A novel enhanced whale optimization algorithm for global optimization. Comput Ind Eng 153:107086. https://doi.org/10.1016/J.CIE.2020.107086

    Article  Google Scholar 

  119. Yıldız BS, Pholdee N, Panagant N, Bureerat S, Yildiz AR, Sait SM (2021) A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems. Eng Comput 1-13. https://doi.org/10.1007/S00366-020-01268-5

  120. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer: pathfinder algorithm. Appl Soft Comput 78:545–568. https://doi.org/10.1016/J.ASOC.2019.03.012

    Article  Google Scholar 

  121. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci 540:131–159. https://doi.org/10.1016/j.ins.2020.06.037

    Article  MathSciNet  MATH  Google Scholar 

  122. Sharma S, Saha AK, Lohar G (2021) Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm. Eng Comput 1-27. https://doi.org/10.1007/s00366-021-01294-x

  123. Sharma S, Saha AK, Majumder A, Nama S (2021) Mpboa - a novel hybrid butterfly optimization algorithm with symbiosis organisms search for global optimization and image segmentation. Multimed Tools Appl 80(3):1–42. https://doi.org/10.1007/s11042-020-10053-x

    Article  Google Scholar 

  124. Huang J, Gao L, Li X (2015) An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes. Appl Soft Comput 36:349–356. https://doi.org/10.1016/j.asoc.2015.07.031

    Article  Google Scholar 

  125. Pawar PJ, Rao RV (2013) Parameter optimization of machining processes using teaching-learning-based optimization algorithm. Int J Adv Manuf Technol 67:995–1006

    Article  Google Scholar 

  126. Hashish M (1984) A modeling study of metal cutting with abrasive waterjets. Trans ASME: J Eng Mater Technol 106:88–100. https://doi.org/10.1115/1.3225682

    Article  Google Scholar 

  127. Hashish M (1989) A model for abrasive water jet (AWJ) machining. Trans ASME: J Eng Mater Technol 111:154–162. https://doi.org/10.1115/1.3226448

    Article  Google Scholar 

  128. Chakraborty S, Saha AK, Sharma S et al (2021) A hybrid whale optimization algorithm for global optimization. J Ambient Intell Human Comput https://doi.org/10.1007/s12652-021-03304-8

  129. Mohamed AW (2018) A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf 29:659–692. https://doi.org/10.1007/s10845-017-1294-6

    Article  Google Scholar 

  130. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  131. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput 56:100693. https://doi.org/10.1016/j.swevo.2020.100693

    Article  Google Scholar 

  132. Rao RV, Pawar RB (2020) Constrained design optimization of selected mechanical system components using Rao algorithms. Appl Soft Comput 89:106141. https://doi.org/10.1016/J.ASOC.2020.106141

    Article  Google Scholar 

  133. Gupta S, Deep K, Mirjalili S, Kim JH (2020) A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst Appl 154:113395. https://doi.org/10.1016/j.eswa.2020.113395

    Article  Google Scholar 

  134. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput https://doi.org/10.1016/j.asoc.2009.08.031

  135. Machado-Coelho TM, Machado AMC, Jaulin L, Ekel P, Pedrycz W, Soares GL (2017) An interval space reducing method for constrained problems with particle swarm optimization. Appl Soft Comput 59:405–417. https://doi.org/10.1016/J.ASOC.2017.05.022

    Article  Google Scholar 

  136. Wang T, Yang L, Liu Q (2020) Beetle swarm optimization algorithm: theory and application. Filomat 34(15):5121–5137. https://doi.org/10.2298/FIL2015121W

    Article  MathSciNet  MATH  Google Scholar 

  137. Meng OK, Pauline O, Kiong SC, Wahab HA, Jafferi N (2017) Application of modified flower pollination algorithm on mechanical engineering design problem. IOP Conference Series: Materials Science and Engineering 165(1):12032. https://doi.org/10.1088/1757-899X/165/1/012032

    Article  Google Scholar 

  138. Wu L, Liu Q, Tian X, Zhang J, Xiao W (2017) A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems. Knowledge-Based Syst 144:153–173. https://doi.org/10.1016/J.KNOSYS.2017.12.031

    Article  Google Scholar 

  139. Canayaz M, Karci A (2016) Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems. Appl Intell 44(2):362–376. https://doi.org/10.1007/S10489-015-0706-6

    Article  Google Scholar 

  140. Czerniak JM, Zarzycki H, Ewald D (2017) AAO as a new strategy in modeling and simulation of constructional problems optimization. Simul Model Pract Theory 76:22–33. https://doi.org/10.1016/J.SIMPAT.2017.04.001

    Article  Google Scholar 

  141. Wang H, Hu Z, Sun Y, Su Q, Xia X (2019) A novel modified BSA inspired by species evolution rule and simulated annealing principle for constrained engineering optimization problems. Neural Comput Applic 31:193–203. https://doi.org/10.1007/s00521-017-3329-5

    Article  Google Scholar 

  142. Das AK, Pratihar DK (2021) Solving engineering optimization problems using an improved real-coded genetic algorithm (irga) with directional mutation and crossover. Soft Comput 25:5455–5481. https://doi.org/10.1007/s00500-020-05545-9

    Article  Google Scholar 

  143. Wang WC, Xu L, Chau KW, Zhao Y, Xu DM (2021) An orthogonal opposition-based-learning yin–Yang-pair optimization algorithm for engineering optimization. Eng Comput 4:1–35. https://doi.org/10.1007/s00366-020-01248-9

    Article  Google Scholar 

  144. Dhiman G (2021) ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Comput 37(1):323–353. https://doi.org/10.1007/S00366-019-00826-W

    Article  Google Scholar 

  145. Gupta S, Deep K, Moayedi H, Foong LK, Assad A (2020) Sine cosine grey wolf optimizer to solve engineering design problems. Eng Comput https://doi.org/10.1007/s00366-020-00996-y

  146. Gupta S, Abderazek H, Yıldız BS, Yildiz AR, Mirjalili S, Sait SM (2021) Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems. Expert Syst Appl https://doi.org/10.1016/j.eswa.2021.115351

  147. Cheng M-Y, Prayogo D (2017) A novel fuzzy adaptive teaching---learning-based optimization (FATLBO) for solving structural optimization problems. Eng Comput 33(1):55–69. https://doi.org/10.1007/S00366-016-0456-Z

    Article  Google Scholar 

  148. Han X, Xu Q, Yue L, Dong Y, Xie G, Xu X (2020) An improved crow search algorithm based on spiral search mechanism for solving numerical and engineering optimization problems. IEEE Access 8:92363–92382. https://doi.org/10.1109/ACCESS.2020.2980300

    Article  Google Scholar 

  149. Wang GG (2003) Adaptive response surface method using inherited Latin hypercube design points. J Mech Design 125(2):210–220. https://doi.org/10.1115/1.1561044

    Article  Google Scholar 

  150. Zhou W, Wang P, Heidari AA, Wang M, Zhao X, Chen H (2021) Multi-core sine cosine optimization: methods and inclusive analysis. Expert Syst Appl 164:113974. https://doi.org/10.1016/J.ESWA.2020.113974

    Article  Google Scholar 

  151. Hasanebi O, Azad SK (2015) Adaptive dimensional search: a new metaheuristic algorithm for discrete truss sizing optimization. Comput Struct 154:1–16. https://doi.org/10.1016/j.compstruc.2015.03.014

    Article  Google Scholar 

  152. Kanarachos S, Griffin J, Fitzpatrick ME (2017) Efficient truss optimization using the contrast-based fruit fly optimization algorithm. Comput Struct 182:137–148. https://doi.org/10.1016/J.COMPSTRUC.2016.11.005

    Article  Google Scholar 

  153. Lieu Q, Do D, Lee J (2017) An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints. Comput Struct 195:99–112. https://doi.org/10.1016/j.compstruc.2017.06.016

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China under Grants No. 11961006, and by the Project of Guangxi Natural Science Foundation under Grant No. 2020GXNSFAA159100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengxu He.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, Y., He, D. An enhanced seagull optimization algorithm for solving engineering optimization problems. Appl Intell 52, 13043–13081 (2022). https://doi.org/10.1007/s10489-021-03155-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-03155-y

Keywords

Navigation