Skip to main content
Log in

Pearson correlation coefficient-based pheromone refactoring mechanism for multi-colony ant colony optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

To solve the problem of falling into local optimum and poor convergence speed in large Traveling Salesman Problem (TSP), this paper proposes a Pearson correlation coefficient-based Pheromone refactoring mechanism for multi-colony Ant Colony Optimization (PPACO). First, the dynamic guidance mechanism is introduced to dynamically adjust the pheromone concentration on the path of the maximum and minimum spanning tree, which can effectively balance the diversity and convergence of the algorithm. Secondly, the frequency of communication between colonies is adjusted adaptively according to a criterion based on the similarity between the minimum spanning tree and the optimal solution. Besides, the pheromone matrix of the colony is reconstructed according to the Pearson correlation coefficient or information entropy to help the algorithm jump out of the local optimum, thus improving the accuracy of the solution. These strategies greatly improve the adaptability of the algorithm and ensure the effectiveness of the interaction. Finally, the experimental results indicate that the proposed algorithm could improve the solution accuracy and accelerate the convergence speed, especially for large-scale TSP instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abualigah L M, Khader A T, Hanandeh E S (2018) A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering. Intelligent Decision Technologies 12:3–14

    Article  Google Scholar 

  2. Abualigah L, Shehab M, Alshinwan M, Alabool H (2019) Salp swarm algorithm: a comprehensive survey. Neural Comput Applic 32:11195–11215

    Article  Google Scholar 

  3. Shehab M, Abualigah L, Al Hamad H, Alabool H, Alshinwan M, Khasawneh A M (2020) Mothflame optimization algorithm: variants and applications, vol 32

  4. Shehab M, Alshawabkah H, Abualigah L, Al-Madi N (2020) Enhanced a hybrid moth-flame optimization algorithm using new selection schemes. Eng Comput 36:1–26

    Article  Google Scholar 

  5. Kirkpatrick S, Gelatt C D, Vecchi M P (1983) Optimization by simulated annealing. Science 220(4598):671

    Article  MathSciNet  MATH  Google Scholar 

  6. Glover F (1977) Heuristics for integer programming using surrogate constraints. Decis Sci 8 (1):156–166

    Article  Google Scholar 

  7. Greiner R (1996) PALO: A probabilistic hill-climbing algorithm. Artif Intell 84(1):177–208

    Article  MathSciNet  Google Scholar 

  8. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  9. Schwefel H-P (1977) Evolutionsstrategien für die numerische Optimierung. In: Schwefel H -P (ed) Numerische optimierung von computer-modellen mittels der evolutionsstrategie: mit einer vergleichenden einführung in die hill-climbing- und zufallsstrategie. Basel, Birkhäuser Basel, pp 123–176

  10. Xin Y, Yong L, Guangming L (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  11. Dorigo M (1992) Optimization learning and natural algorithms. PhD Thesis, Politecnico di Milano

    Google Scholar 

  12. Kennedy J (1944) Eberhart R Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995 1995. pp 1942–1948 vol

  13. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  14. Pan W -T (2012) A new Fruit Fly Optimization algorithm: Taking the financial distress model as an example. Knowl-Based Syst 26:69–74

    Article  Google Scholar 

  15. Dinh Thanh P, Thi Thanh Binh H, Thu Lam B (2015) New Mechanism of Combination Crossover Operators in Genetic Algorithm for Solving the Traveling Salesman Problem. In: Nguyen V-H, Le A-C, Huynh V-N (eds) Knowledge and Systems Engineering, Cham, 2015. Springer International Publishing, pp 367–379

  16. Huang L, Wang G-c, Bai T, Wang Z (2017) An improved fruit fly optimization algorithm for solving traveling salesman problem. Frontiers of Information Technology & Electronic Engineering 18 (10):1525–1533

    Article  Google Scholar 

  17. Bouzidi M, Riffi ME, Serhir A (2018) Discrete Particle Swarm Optimization for Travelling Salesman Problems: New Combinatorial Operators. In: Abraham A, Haqiq A, Muda AK, Gandhi N (eds) Proceedings of the Ninth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2017), Cham, 2018//. Springer International Publishing, pp 141–150

  18. Li L, Cheng Y, Tan L, Niu B (2012) A Discrete Artificial Bee Colony Algorithm for TSP Problem. In: Huang D-S, Gan Y, Premaratne P, Han K (eds) Bio-Inspired Computing and Applications, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg, pp 566–573

  19. Dorigo M (1992) Optimization learning and natural algorithms. PhD Thesis, Politecnico di Milano

    Google Scholar 

  20. Parvin H, Moradi P, Esmaeili S (2019) TCFACO: Trust-aware Collaborative filtering method based on ant colony optimization. Expert Syst Appl 118:152–168

    Article  Google Scholar 

  21. Tabakhi S, Moradi P, Akhlaghian F (2014) An unsupervised feature selection algorithm based on ant colony optimization. Eng Appl Artif Intell 32:112–123

    Article  Google Scholar 

  22. Luo Y B, Waden Y P (2017) The improved ant colony optimization algorithm for MLP considering the advantage from relationship. Math Probl Eng 2017:11

    Google Scholar 

  23. Lee J (2017) Heterogeneous-ants-based path planner for global path planning of mobile robot applications. International Journal of Control Automation and Systems 15(4):1754–1769

    Article  Google Scholar 

  24. Zhu H, You X, Liu S (2019) Multiple ant colony optimization based on pearson correlation coefficient. IEEE Access 7:61628–61638

    Article  Google Scholar 

  25. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B (Cybernetics) 26(1):29–41

    Article  Google Scholar 

  26. Dorigo M, Gambardella L M (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  27. Stützle T, Hoos HH (2000) MAX–MIN Ant system. Futur Gener Comput Syst 16(8):889–914

    Article  MATH  Google Scholar 

  28. Wu Y, Ma W, Miao Q, Wang S (2019) Multimodal continuous ant colony optimization for multisensor remote sensing image registration with local search. Swarm and Evolutionary Computation 47:89–95

    Article  Google Scholar 

  29. Ratanavilisagul C (2017) Modified Ant Colony Optimization with pheromone mutation for travelling salesman problem. In: 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 27-30 June 2017. pp 411–414

  30. Gao W (2016) Premium-penalty ant colony optimization and its application in slope stability analysis. Appl Soft Comput 43:480–488

    Article  Google Scholar 

  31. Ye K, Zhang C, Ning J, Liu X (2017) Ant-colony algorithm with a strengthened negative-feedback mechanism for constraint-satisfaction problems. Inf Sci 406-407:29–41

    Article  Google Scholar 

  32. Chen L, Sun H -Y, Wang S (2012) A parallel ant colony algorithm on massively parallel processors and its convergence analysis for the travelling salesman problem. Inf Sci 199:31–42

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang Q, Zhang C (2018) An improved ant colony optimization algorithm with strengthened pheromone updating mechanism for constraint satisfaction problem. Neural Comput & Applic 30(10):3209–3220

    Article  Google Scholar 

  34. Shetty A, Shetty A, Puthusseri KS, Shankaramani DR (2018) An Improved Ant Colony optimization Algorithm: Minion Ant(MAnt) and its Application on TSP. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 18-21 Nov. 2018. pp 1219–1225

  35. Jun-man K, Yi Z (2012) Application of an improved ant colony optimization on generalized traveling salesman problem. Energy Procedia 17:319–325

    Article  Google Scholar 

  36. Xiao J, Li L (2011) A hybrid ant colony optimization for continuous domains. Expert Syst Appl 38(9):11072–11077

    Article  Google Scholar 

  37. Dahan F, El Hindi K, Mathkour H, AlSalman H (2019) Dynamic flying ant colony optimization (DFACO) for solving the traveling salesman problem. Sensors 19(8):1837

    Article  Google Scholar 

  38. Yindee O, Arit T (2018) Modified Ant Colony Optimization Algorithm for Multiple-vehicle Traveling Salesman Problems. International Journal of Networked and Distributed Computing 7(1):29–36

    Article  Google Scholar 

  39. Kaabachi I, Jriji D, Krichen SA (2017) DSS Based on Hybrid Ant Colony Optimization Algorithm for the TSP. In: Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM (eds) Artificial Intelligence and Soft Computing, Cham, 2017//. Springer International Publishing, pp 645–654

  40. Luan J, Yao Z, Zhao F, Song X (2019) A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization. Math Comput Simul 156:294–309

    Article  MathSciNet  Google Scholar 

  41. Mohsen A M (2016) Annealing ant colony optimization with mutation operator for solving TSP. Computational Intelligence and Neuroscience 2016:13

    Article  Google Scholar 

  42. Zhang B, Qi H, Sun S C, Ruan L M, Tan H P (2016) A novel hybrid ant colony optimization and particle swarm optimization algorithm for inverse problems of coupled radiative and conductive heat transfer. Therm Sci 20(2):461–472

    Article  Google Scholar 

  43. Mahi M, Baykan Ök, Kodaz H (2015) A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling Salesman Problem. Applied Soft Computing 30:484–490

    Article  Google Scholar 

  44. Gülcü S, Mahi M, Baykan ÖK, Kodaz H (2018) A parallel cooperative hybrid method based on ant colony optimization and 3-Opt algorithm for solving traveling salesman problem. Soft Comput 22 (5):1669–1685

    Article  Google Scholar 

  45. Wang X, Yang K, Yang L (2018) Application Research of Inner-plant Economical Operation by Multi-colony Ant Optimization. Water Resour Manag 32(13):4275–4295

    Article  Google Scholar 

  46. Chen J, You X, Liu S, Li J (2019) Entropy-Based Dynamic heterogeneous ant colony optimization. IEEE Access 7:56317–56328

    Article  Google Scholar 

  47. Yang L, Sun X, Zhu A, Chi T H (2017) A multiple ant colony optimization algorithm for indoor room optimal spatial allocation. Isprs International Journal of Geo-Information 6(6):161

    Article  Google Scholar 

  48. Tuani AF, Keedwell E, Collett M (2018) H-ACO: A Heterogeneous Ant Colony Optimisation Approach with Application to the Travelling Salesman Problem. In: Lutton E, Legrand P, Parrend P, Monmarche N, Schoenauer M (eds) Artificial Evolution, Cham, 2018. Springer International Publishing, pp 144–161

  49. Zhao J, Xue W, Hao C (2018) Heterogeneous Feature Ant Colony Optimization Algorithm Based on Effective Vertexes of Obstacles. In: 2018 Chinese Automation Congress (CAC), 30 Nov.-2 Dec. 2018. pp 30–34

  50. Yao Y, Ni Q, Lv Q, Huang K (2015) A novel heterogeneous feature ant colony optimization and its application on robot path planning. In: 2015 IEEE Congress on Evolutionary Computation (CEC), 25-28 May 2015. pp 522–528

  51. Xu M, You X, Liu S (2017) A novel heuristic communication heterogeneous dual population ant colony optimization algorithm. IEEE Access 5:18506–18515

    Article  Google Scholar 

  52. Wei L, Yuren Z (2010) An Effective Hybrid Ant Colony Algorithm for Solving the Traveling Salesman Problem. In: 2010 International Conference on Intelligent Computation Technology and Automation, 11-12 May 2010. pp 497–500

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61673258, Grant 61075115 and in part by the Shanghai Natural Science Foundation under Grant 19ZR1421600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming You.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., You, X., Liu, S. et al. Pearson correlation coefficient-based pheromone refactoring mechanism for multi-colony ant colony optimization. Appl Intell 51, 752–774 (2021). https://doi.org/10.1007/s10489-020-01841-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01841-x

Keywords

Navigation