Skip to main content
Log in

Multi-Colony Ant Optimization Based on Pheromone Fusion Mechanism of Cooperative Game

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we propose a multi-colony ant optimization based on pheromone fusion mechanism of cooperative game (CGMACO) to balance the convergence speed and diversity of the algorithm. Firstly, the heterogeneous multi-colony is composed of ant colony system (ACS) and Max–Min ant system (MMAS), and these two classical colonies coordinate together to improve the solution quality. Secondly, the cooperative game model determines which sub-colonies can interact with each other based on evaluating each union’s payoff, while the pheromone fusion mechanism decides what information can exchange by regulating the pheromone matrix of each subpopulation. Those two methods can greatly diversify the solution of algorithm. In addition, the information entropy is also introduced to control the interaction frequency, which enhances the adaptability of the algorithm. Finally, the experimental results of the large-scale TSP instances show that the improved algorithm can improve the accuracy of the solution without affecting the convergence speed and better than the existing intelligent algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, F.; Zeng, G.: Study of genetic algorithm with reinforcement learning to solve the TSP. Expert Syst. Appl. 36, 6995–7001 (2009). https://doi.org/10.1016/j.eswa.2008.08.026

    Article  Google Scholar 

  2. Mahi, M.; Baykan, Ö.K.; Kodaz, H.: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-opt algorithms for traveling salesman problem. Appl. Soft Comput. J. 30, 484–490 (2015). https://doi.org/10.1016/j.asoc.2015.01.068

    Article  Google Scholar 

  3. Panwar, K.; Deep, K.: Discrete grey wolf optimizer for symmetric travelling salesman problem. Appl. Soft Comput. 105, 107298 (2021). https://doi.org/10.1016/j.asoc.2021.107298

    Article  Google Scholar 

  4. Dorigo, M.; Maniezzo, V.; Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man, Cybern. Part B 26, 29–41 (1996). https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  5. Dorigo, M.; Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997). https://doi.org/10.1109/4235.585892

    Article  Google Scholar 

  6. Stützle, T.: Hoos HH (2000) MAX–MIN ant system. Futur. Gener. Comput. Syst. 16, 889–914 (2000). https://doi.org/10.1016/S0167-739X(00)00043-1

    Article  Google Scholar 

  7. Sangeetha, V.; Krishankumar, R.; Ravichandran, K.S.; Kar, S.: Energy-efficient green ant colony optimization for path planning in dynamic 3D environments. Soft Comput. 25, 4749–4769 (2021). https://doi.org/10.1007/s00500-020-05483-6

    Article  Google Scholar 

  8. Ye, K.; Zhang, C.; Ning, J.; Liu, X.: Ant-colony algorithm with a strengthened negative-feedback mechanism for constraint-satisfaction problems. Inf. Sci. (Ny) 406, 29–41 (2017). https://doi.org/10.1016/j.ins.2017.04.016

    Article  Google Scholar 

  9. Ning, J.; Zhang, Q.; Zhang, C.; Zhang, B.: A best-path-updating information-guided ant colony optimization algorithm. Inf. Sci. (Ny) 433, 142–162 (2018). https://doi.org/10.1016/j.ins.2017.12.047

    Article  MathSciNet  Google Scholar 

  10. Tseng, H.E.; Chang, C.C.; Lee, S.C.; Huang, Y.M.: Hybrid bidirectional ant colony optimization (hybrid BACO): an algorithm for disassembly sequence planning. Eng. Appl. Artif. Intell. 83, 45–56 (2019). https://doi.org/10.1016/j.engappai.2019.04.015

    Article  Google Scholar 

  11. Olivas, F.; Valdez, F.; Castillo, O.; Gonzalez, C.I.; Martinez, G.; Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. J. 53, 74–87 (2017). https://doi.org/10.1016/j.asoc.2016.12.015

    Article  Google Scholar 

  12. Tuani, A.F.; Keedwell, E.; Collett, M.: Heterogenous adaptive ant colony optimization with 3-opt local search for the travelling salesman problem. Appl. Soft Comput. 97, 106720 (2020). https://doi.org/10.1016/j.asoc.2020.106720

    Article  Google Scholar 

  13. Miao, C.; Chen, G.; Yan, C.; Wu, Y.: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Comput. Ind. Eng. 156, 107230 (2021). https://doi.org/10.1016/j.cie.2021.107230

    Article  Google Scholar 

  14. Chatterjee, S.; Das, S.: Ant colony optimization based enhanced dynamic source routing algorithm for mobile Ad-hoc network. Inf. Sci. (Ny) 295, 67–90 (2015). https://doi.org/10.1016/j.ins.2014.09.039

    Article  MathSciNet  Google Scholar 

  15. Raveendra, K.; Vinothkanna, R.: Hybrid ant colony optimization model for image retrieval using scale-invariant feature transform local descriptor. Comput. Electr. Eng. 74, 281–291 (2019). https://doi.org/10.1016/j.compeleceng.2019.02.006

    Article  Google Scholar 

  16. Wang, Y.; Wang, L.; Chen, G.; Cai, Z.; Zhou, Y.; Xing, L.: An improved ant colony optimization algorithm to the periodic vehicle routing problem with time window and service choice. Swarm Evol. Comput. (2020). https://doi.org/10.1016/j.swevo.2020.100675

    Article  Google Scholar 

  17. Hong, T.P.; Tung, Y.F.; Wang, S.L.; Wu, Y.L.; Wu, M.T.: A multi-level ant-colony mining algorithm for membership functions. Inf. Sci. (Ny) 182, 3–14 (2012). https://doi.org/10.1016/j.ins.2010.12.019

    Article  MathSciNet  Google Scholar 

  18. Gambardella, L.M.: MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. New Ideas Optim. (1999)

  19. Chu, S.-C.; Roddick, J.F.; Pan, J.-S.: Ant colony system with communication strategies. Inf. Sci. (Ny) 167, 63–76 (2004). https://doi.org/10.1016/j.ins.2003.10.013

    Article  MathSciNet  MATH  Google Scholar 

  20. Twomey, C.; Stützle, T.; Dorigo, M.; Manfrin, M.; Birattari, M.: An analysis of communication policies for homogeneous multi-colony ACO algorithms. Inf. Sci. (Ny) 180, 2390–2404 (2010). https://doi.org/10.1016/j.ins.2010.02.017

    Article  Google Scholar 

  21. Dong, G.; Guo, W.W.; Tickle, K.: Solving the traveling salesman problem using cooperative genetic ant systems. Expert Syst. Appl. 39, 5006–5011 (2012). https://doi.org/10.1016/j.eswa.2011.10.012

    Article  Google Scholar 

  22. Zhang, D.; You, X.; Liu, S.; Yang, K.: Multi-colony ant colony optimization based on generalized jaccard similarity recommendation strategy. IEEE Access. 7, 157303–157317 (2019). https://doi.org/10.1109/ACCESS.2019.2949860

    Article  Google Scholar 

  23. Wang, Y.; Wang, L.; Peng, Z.; Chen, G.; Cai, Z.; Xing, L.: A multi ant system based hybrid heuristic algorithm for vehicle routing problem with service time customization. Swarm Evol. Comput. 50, 100563 (2019). https://doi.org/10.1016/j.swevo.2019.100563

    Article  Google Scholar 

  24. Yang, K.; You, X.; Liu, S.; Pan, H.: A novel ant colony optimization based on game for traveling salesman problem. Appl. Intell. 50, 4529–4542 (2020). https://doi.org/10.1007/s10489-020-01799-w

    Article  Google Scholar 

  25. Li, S.; You, X.; Liu, S.: Multiple ant colony optimization using both novel LSTM network and adaptive Tanimoto communication strategy. Appl. Intell. (2021). https://doi.org/10.1007/s10489-020-02099-z

    Article  Google Scholar 

  26. Deng, Y.: Uncertainty measure in evidence theory. Sci. China Inf. Sci. 63, 1–19 (2020). https://doi.org/10.1007/s11432-020-3006-9

    Article  MathSciNet  Google Scholar 

  27. Deng, Y.: Information volume of mass function. Int. J. Comput. Commun. Control (2020). https://doi.org/10.15837/ijccc.2020.6.3983

    Article  Google Scholar 

  28. Xue, Y.; Deng, Y.: Tsallis eXtropy. Commun. Stat - Theory Methods (2021). https://doi.org/10.1080/03610926.2021.1921804

    Article  Google Scholar 

  29. Zhao, J.; Liang, J.M.; Dong, Z.N.; Tang, D.Y.; Liu, Z.: Accelerating information entropy-based feature selection using rough set theory with classified nested equivalence classes. Pattern Recognit. 107, 107517 (2020). https://doi.org/10.1016/j.patcog.2020.107517

    Article  Google Scholar 

  30. Sabirov, D.S.: Information entropy of mixing molecules and its application to molecular ensembles and chemical reactions. Comput. Theor. Chem. 1187, 112933 (2020). https://doi.org/10.1016/j.comptc.2020.112933

    Article  Google Scholar 

  31. Zhu, H.; Wang, Y.; Du, C.; Zhang, Q.; Wang, W.: A novel odor source localization system based on particle filtering and information entropy. Rob. Auton. Syst. 132, 103619 (2020). https://doi.org/10.1016/j.robot.2020.103619

    Article  Google Scholar 

  32. Saji, Y.; Barkatou, M.: A discrete bat algorithm based on Lévy flights for Euclidean traveling salesman problem. Expert Syst. Appl. 172, 114639 (2021). https://doi.org/10.1016/j.eswa.2021.114639

    Article  Google Scholar 

  33. Akhand, M.A.H.; Ayon, S.I.; Shahriyar, S.A.; Siddique, N.; Adeli, H.: Discrete spider monkey optimization for travelling salesman problem. Appl. Soft Comput. J. 86, 105887 (2020). https://doi.org/10.1016/j.asoc.2019.105887

    Article  Google Scholar 

  34. Gülcü, Ş; Mahi, M.; Baykan, Ö.K.; Kodaz, H.: A parallel cooperative hybrid method based on ant colony optimization and 3-Opt algorithm for solving traveling salesman problem. Soft Comput. 22, 1669–1685 (2018). https://doi.org/10.1007/s00500-016-2432-3

    Article  Google Scholar 

  35. Ebadinezhad, S.: DEACO: adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem. Eng. Appl. Artif. Intell. 92, 103649 (2020). https://doi.org/10.1016/j.engappai.2020.103649

    Article  Google Scholar 

  36. Yong, W.: Hybrid Max-Min ant system with four vertices and three lines inequality for traveling salesman problem. Soft Comput. 19, 585–596 (2015). https://doi.org/10.1007/s00500-014-1279-8

    Article  Google Scholar 

  37. Osaba, E.; Ser, J.D.; Sadollah, A.; Bilbao, M.N.; Camacho, D.: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem. Appl. Soft Comput. J. 71, 277–290 (2018). https://doi.org/10.1016/j.asoc.2018.06.047

    Article  Google Scholar 

  38. Khan, I.; Maiti, M.K.: A swap sequence based artificial bee colony algorithm for traveling salesman problem. Swarm Evol. Comput. 44, 428–438 (2019). https://doi.org/10.1016/j.swevo.2018.05.006

    Article  Google Scholar 

  39. Ezugwu, A.E.S.; Adewumi, A.O.: Discrete symbiotic organisms search algorithm for travelling salesman problem. Expert Syst. Appl. 87, 70–78 (2017). https://doi.org/10.1016/j.eswa.2017.06.007

    Article  Google Scholar 

  40. Osaba, E.; Yang, X.S.; Diaz, F.; Lopez-Garcia, P.; Carballedo, R.: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng. Appl. Artif. Intell. 48, 59–71 (2016). https://doi.org/10.1016/j.engappai.2015.10.006

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61673258, 61075115 and in part by the Shanghai Natural Science Foundation under Grant 19ZR1421600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Y., You, X. & Liu, S. Multi-Colony Ant Optimization Based on Pheromone Fusion Mechanism of Cooperative Game. Arab J Sci Eng 47, 1657–1674 (2022). https://doi.org/10.1007/s13369-021-06033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06033-4

Keywords

Navigation