Skip to main content
Log in

A projection wavelet weighted twin support vector regression and its primal solution

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, an efficient projection wavelet weighted twin support vector regression (PWWTSVR) algorithm is proposed. PWWTSVR determines the regression function by solving a pair of smaller unconstrained minimization problems in primal space, which can reduce computational costs. Classical SVR algorithms give the same emphasis to all training samples, which degrades performance. PWWTSVR gives samples penalty weights determined by wavelet transforms. These are applied to both the quadratic empirical risks term and the first-degree empirical risks term to reduce the influence of outliers. A projection axis in each objective function is sought to minimize the variance of the projected points due to the utilization of a priori information of training data. Therefore, data structure terms are added to the penalty functions. The final regressor can avoid the overfitting problem to a certain extent, and yields great generalization ability. Numerical experiments on artificial and benchmark datasets demonstrate the feasibility and validity of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vapnik VN (1995) The natural of statistical learning theroy. Springer, New York

    Book  Google Scholar 

  2. Vapnik VN (1998) Statistical learning theroy. Wiley, New York

    Google Scholar 

  3. Khemchandani JR, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal 29(5):905–910

    Article  MATH  Google Scholar 

  4. Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):356–372

    Article  MATH  Google Scholar 

  5. Suykens JAK, Lukas L, Dooren V (1999) Least squares support vector machine classifiers: a large scale algorithm. In: Proceedings of ECCTD. Italy, pp 839–842

  6. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  7. Scholkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New support vector algorithms. Neurocomputing 12(5):1207–1245

    Google Scholar 

  8. Huang XL, Shi L, Pelckmans K, Suykens JAK (2014) Asymmetric ν-tube support vector regression. Comput Stat Data Anal 77:371–382

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang XL, Shi L, Suykens JAK (2014) Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal 36:984– 997

    Article  Google Scholar 

  10. Xu Y, Yang Z, Pan X (2016) A novel twin support vector machine with pinball loss. IEEE Trans Neural Netw Learn Syst 28(2):359–370

    Article  MathSciNet  Google Scholar 

  11. Xu Y, Yang Z, Zhang Y, Pan X, Wang L (2016) A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification. Knowl-Based Syst 95:75–85

    Article  Google Scholar 

  12. Xu Y, Li X, Pan X, Yang Z (2017) Asymmetric ν-twin support vector regression. Neural Comput Appl 2:1–16

    Google Scholar 

  13. Shao Y, Zhang C, Yang Z, Jing L, Deng N (2013) An ν-twin support vector machine for regression. Neural Comput Appl 23:175–185

    Article  Google Scholar 

  14. Rastogi R, Anand P, Chandra S (2017) A v-twin support vector machine based regression with automatic accuracy control. Appl Intell 46:670–683

    Article  Google Scholar 

  15. Peng X, Xu D, Shen J (2014) A twin projection support vector machine for data regression. Neuro Comput 138:131–141

    Google Scholar 

  16. Melki G, Cano A, Kecman V, Ventura S (2017) Multi-target support vector regression via correlation regressor chains. Info Sci s415–416:53–69

    Article  MathSciNet  Google Scholar 

  17. Ding S, Wu F, Shi Z (2014) Wavelet twin support vector machine. Neural Comput Appl 25(6):1241–1247

    Article  Google Scholar 

  18. Melki G, Cano A, Ventura S (2018) MIRSVM: multi-instance support vector machine with bag representatives. Pattern Recogn 79:228–241

    Article  Google Scholar 

  19. Melki G, Kecman V, Ventura S, Cano A (2018) OLLAWV: OnLine learning algorithm using worst-violators. Appl Soft Comput 66:384–393

    Article  Google Scholar 

  20. Xu Y, Wang L (2014) K-nearest neighbor-based weighted twin support vector regression. Appl Intell 41:299–309

    Article  Google Scholar 

  21. Gupta D (2017) Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization. Appl Intell 47:962–991

    Article  Google Scholar 

  22. Chapelle O (2007) Training a support vector machine in the primal. Neurocomputing 19(5):1155–1178

    MathSciNet  MATH  Google Scholar 

  23. Ye Y, Bai L, Hua X, Shao Y, Wang Z, Deng N (2016) Weighted Lagrange ν-twin support vector regression. Neurocomputing 197:53–68

    Article  Google Scholar 

  24. Shevade S, Keerthi S, Bhattacharyya C (2000) Improvements to the SMO algorithm for SVM regression. IEEE Trans Neural Netw 11(5):1188–1193

    Article  Google Scholar 

  25. Lee Y, Hsieh W, Huang C (2005) SSVR: a smooth support vector machine for insensitive regression. IEEE Trans Knowl Data En 17(5):678–685

    Article  Google Scholar 

  26. Peng X, Chen D (2018) PTSVRs: regression models via projection twin support vector machine. Info Sci 435:1–14

    Article  MathSciNet  Google Scholar 

  27. Horn RA, Johnson CR (2013) Matrix analysis, 2nd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  28. Zhang F (2005) The Schur complement and its applications. Springer, New York

    Book  MATH  Google Scholar 

  29. Blake C, Merz C (1998) UCI repository for machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 71571091 and 71771112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebo Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gao, C., Zhao, N. et al. A projection wavelet weighted twin support vector regression and its primal solution. Appl Intell 49, 3061–3081 (2019). https://doi.org/10.1007/s10489-019-01422-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01422-7

Keywords

Navigation