Skip to main content
Log in

A multi-threshold segmentation approach based on Artificial Bee Colony optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper explores the use of the Artificial Bee Colony (ABC) algorithm to compute threshold selection for image segmentation. ABC is an evolutionary algorithm inspired by the intelligent behavior of honey-bees which has been successfully employed to solve complex optimization problems. In this approach, an image 1-D histogram is approximated through a Gaussian mixture model whose parameters are calculated by the ABC algorithm. In the model, each Gaussian function represents a pixel class and therefore a threshold point. Unlike the Expectation-Maximization (EM) algorithm, the ABC method shows fast convergence and low sensitivity to initial conditions. Remarkably, it also improves complex time-consuming computations commonly required by gradient-based methods. Experimental results over multiple images with different range of complexity validate the efficiency of the proposed technique with regard to segmentation accuracy, speed, and robustness. The paper also includes an experimental comparison to the EM and to one gradient-based method which ultimately demonstrates a better performance from the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saha S, Bandyopadhyay S (2011) Automatic MR brain image segmentation using a multiseed based multiobjective clustering approach. Appl. Intel. doi:10.1007/s10489-010-0231-6

  2. Iakovidis D, Savelonas M, Karkanis S, Maroulis D (2007) A genetically optimized level set approach to segmentation of thyroid ultrasound images. Appl Intell 27(3):193–203

    Article  Google Scholar 

  3. Kyriacou E, Pattichis M, Pattichis C, Mavrommatis A, Christodoulou C, Kakkos S, Nicolaides A (2009) Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images. Appl Intell 30(1):3–23

    Article  Google Scholar 

  4. Mahmoud S, Al-Khatib W (2011) Recognition of Arabic (Indian) bank check digits using log-gabor filters. Appl. Intel. doi:10.1007/s10489-010-0235-2

  5. Lee L, Wan C, Rajkumar R, Isa D (2011) An enhanced Support Vector Machine classification framework by using Euclidean distance function for text document categorization. Appl. Intel. doi:10.1007/s10489-011-0314-z

  6. An S-Y, Kang J-G, Choi W-S, Oh S-Y (2011) A neural network based re-trainable framework for robust object recognition with application to mobile robotics. Appl Intell 35(2):190–210

    Article  Google Scholar 

  7. Mirghasemi S, Yazdi H, Lotfizad M (2011). A target-based color space for sea target detection. Appl. Intel. doi:10.1007/s10489-011-0307-y

  8. Valova I, Milano G, Bowen K, Gueorguieva N (2011) Bridging the fuzzy, neural and evolutionary paradigms for automatic target recognition. Appl Intell 35(2):211–225

    Article  Google Scholar 

  9. Risinger L, Kaikhah K (2008) Motion detection and object tracking with discrete leaky integrate-and-fire neurons. Appl Intell 29(3):248–262

    Article  Google Scholar 

  10. Yang M-D, Su T-C, Pan N-F, Yang Y-F (2011) Systematic image quality assessment for sewer inspection. Expert Syst Appl 38(3):1766–1776

    Article  Google Scholar 

  11. Goumasa S, Dimoub I, Zervakis M (2010) Combination of multiple classifiers for post-placement quality inspection of components: A comparative study. Inf Fusion 11(2):149–162

    Article  Google Scholar 

  12. Pujol F, Pujol M, Rizo R, Pujol M (2011) On searching for an optimal threshold for morphological image segmentation. PAA Pattern Anal Appl, 14:235–250

    Article  MathSciNet  Google Scholar 

  13. Arora S, Acharya J, Verma A, Panigrahi P (2008) Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognit Lett 29:119–125

    Article  Google Scholar 

  14. Guo R, Pandit SM (1998) Automatic threshold selection based on histogram modes and discriminant criterion. Mach Vis Appl 10:331–338

    Article  Google Scholar 

  15. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recognit 26:1277–1294

    Article  Google Scholar 

  16. Shaoo PK, Soltani S, Wong AKC, Chen YC (1988) Survey: A survey of thresholding techniques. Comput Vis Graph Image Process 41:233–260

    Article  Google Scholar 

  17. Snyder W, Bilbro G, Logenthiran A, Rajala S (1990) Optimal thresholding: A new approach. Pattern Recognit Lett 11:803–810

    Article  MATH  Google Scholar 

  18. Chen S, Wang M (2005) Seeking multi-thresholds directly from support vectors for image segmentation. Neurocomputing 67(4):335–344

    Article  Google Scholar 

  19. Lai C-C (2006) A novel image segmentation approach based on particle swarm optimization. IEICE Trans Fundam 89(1):324–327

    Article  Google Scholar 

  20. Janev M, Pekar D, Jakovljevic N, Delic V (2010) Eigenvalues driven Gaussian selection in continuous speech recognition using HMMs with full covariance matrices. Appl Intell 33(2):107–116

    Article  Google Scholar 

  21. Kocsor A, Tóth L (2004) Application of kernel-based feature space transformations and learning methods to phoneme classification. Appl Intell 21(2):129–142

    Article  MATH  Google Scholar 

  22. Gupta L, Sortrakul T (1998) A Gaussian-mixture-based image segmentation algorithm. Pattern Recognit 31(3):315–325

    Article  Google Scholar 

  23. Dempster AP, Laird AP, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc, Ser B, Stat Methodol 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  24. Zhang Z, Chen C, Sun J, Chan L (2003) EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognit 36:1973–1983

    Article  MATH  Google Scholar 

  25. Lu Z (2007) Entropy regularized likelihood learning on Gaussian mixture: two gradient implementations for automatic model selection. Neural Process Lett 25(1):17–30

    Article  MATH  Google Scholar 

  26. Maa J, Wanga T, Xua L (2004) A gradient BYY harmony learning rule on Gaussian mixture with automated model selection. Neurocomputing 56:481–487

    Article  Google Scholar 

  27. Park H, Ozeki T (2009) Singularity and slow convergence of the EM algorithm for Gaussian mixtures. Neural Process Lett 29:45–59

    Article  Google Scholar 

  28. Ma J, Xu L, Jordan MI (2000) Asymptotic convergence rate of the EM algorithm for Gaussian mixtures. Neural Comput 12:2881–2907

    Article  Google Scholar 

  29. Xu L, Jordan MI (1996) On convergence properties for the EM algorithm. Neural Comput 8:129–151

    Article  Google Scholar 

  30. Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26(2):195–239

    Article  MathSciNet  MATH  Google Scholar 

  31. Park H, Ozeki T (2009) Singularity and slow convergence of the EM algorithm for Gaussian mixtures. Neural Process Lett 29:45–59

    Article  Google Scholar 

  32. Park H, Amari S, Fukumizu K (2000) Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw 13:755–764

    Article  Google Scholar 

  33. Xu L, Jordan MI (1996) On convergence of the EM algorithm for Gaussian mixtures. Neural Comput 8(1):129–151

    Article  Google Scholar 

  34. Olsson R, Petersen K, Lehn-Schiøler T (2008) State-space models: from the EM algorithm to a Gradient approach. Neural Comput 19(4):1097–1111

    Article  Google Scholar 

  35. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  36. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  37. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132

    Article  MathSciNet  MATH  Google Scholar 

  38. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Inst 346:328–348

    Article  MathSciNet  MATH  Google Scholar 

  39. Pan Q-K, Fatih Tasgetiren M, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences. doi:10.1016/j.ins.2009.12.025

  40. Kang F, Li J, Xu Q (2009) Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87:861–870

    Article  Google Scholar 

  41. Zhang C, Ouyang D, Ning J (2010) An artificial bee colony approach for clustering. Expert Syst Appl 37:4761–4767

    Article  Google Scholar 

  42. Karaboga D, Ozturk C (2011) A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl Soft Comput 11:652–657

    Article  Google Scholar 

  43. Ho SL, Yang S (2009) An artificial bee colony algorithm for inverse problems. Int J Appl Electromagn Mech, 31:181–192

    Google Scholar 

  44. Gonzalez RC, Woods RE (1992) Digital image processing. Addison Wesley, Reading

    Google Scholar 

  45. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  Google Scholar 

  46. Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J Heurist. doi:10.1007/s10732-008-9080-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zaldivar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuevas, E., Sención, F., Zaldivar, D. et al. A multi-threshold segmentation approach based on Artificial Bee Colony optimization. Appl Intell 37, 321–336 (2012). https://doi.org/10.1007/s10489-011-0330-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-011-0330-z

Keywords

Navigation