Skip to main content

Advertisement

Log in

A genetically optimized level set approach to segmentation of thyroid ultrasound images

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a novel framework for thyroid ultrasound image segmentation that aims to accurately delineate thyroid nodules. This framework, named GA-VBAC incorporates a level set approach named Variable Background Active Contour model (VBAC) that utilizes variable background regions, to reduce the effects of the intensity inhomogeneity in the thyroid ultrasound images. Moreover, a parameter tuning mechanism based on Genetic Algorithms (GA) has been considered to search for the optimal VBAC parameters automatically, without requiring technical skills. Experiments were conducted over a range of ultrasound images displaying thyroid nodules. The results show that the proposed GA-VBAC framework provides an efficient, effective and highly objective system for the delineation of thyroid nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AACE clinical practice guidelines for the diagnosis and management of thyroid nodules (1996) Endocr Pract 2(1):78–84

    Google Scholar 

  2. Jardim SVB, Figueiredo MAT (2003) Automatic contour estimation in fetal ultrasound images. In: Proceedings of the IEEE international conference on image processing, vol 2, pp 1065–1068

  3. New York Thyroid Center page. http://cpmcnet.columbia.edu/dept/thyroid/

  4. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, Panunzi C, Rinaldi R, Toscano V, Pacella CM (2002) Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metabol 87(5):1941–1946

    Article  Google Scholar 

  5. Zimmer Y, Tepper R, Akselrod S (1996) A two-dimensional extension of minimum cross entropy thresholding for the segmentation of ultrasound images. Ultrasound Medic Biol 22:1183–1190

    Article  Google Scholar 

  6. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Article  Google Scholar 

  7. Pohle R, Toennies K (2001) Segmentation of medical images using adaptive region growing. Proc SPIE Med Im 4322:1337–1346

    Article  Google Scholar 

  8. Hao X, Bruce C, Pislaru C, Greenleaf JF (2000) A novel region growing method for segmenting ultrasound images. In: Proceedings of the IEEE international ultrasonics symposium, vol 2, pp 1717–1720

  9. Kotropoulos C, Pittas I (2003) Segmentations of ultrasonic images using support vector machines. Pattern Recognit Lett 24:715–727

    Article  MATH  Google Scholar 

  10. Boukerroui D, Basset O, Guerin N, Baskurt A (1998) Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation. Eur J Ultrasound 8:135–144

    Article  Google Scholar 

  11. Fan L, Braden GA, Herrington DM (1996) Nonlinear wavelet filter for intracoronary ultrasound images. In: Proceedings of annual meeting on computers in cardiology, pp 41–44

  12. Thomas JG, Peters RA, Jeanty P (1991) Automatic segmentation of ultrasound images using morphological operators. IEEE Trans Med Im 10:180–186

    Article  Google Scholar 

  13. Heckman T (1996) Searching for contours. Proc SPIE 2666:223–232

    Article  Google Scholar 

  14. Solaiman B, Roux C, Rangayyan RM, Pipelier F, Hillion A (1996) Fuzzy edge evaluation in ultrasound endosonographic images. In: Proceedings of the Canadian conference on electrical and computer engineering, pp 335–338

  15. Chen CM, Lu HHS, Hsiao AT (2001) A dual-snake model of high penetrability for ultrasound image boundary extraction. Ultrasound Med Biol 27(12):1651–1665

    Article  Google Scholar 

  16. Haenselmann T, Schremmer C, Effelsberg W (2001) Wavelet based semi-automatic segmentation of image objects. In: Proceedings of IEEE international conference on signal and image processing, pp 387–392

  17. Blake A, Isard M (1999) Active contours: the application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion. Springer, Berlin

    Google Scholar 

  18. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247

    Article  MATH  Google Scholar 

  19. McInerney T, Terzopoulos D (1996) Deformable models in medical images analysis: a survey. Med Im Anal 1(2):91–108

    Article  Google Scholar 

  20. Lee JH, Lin CJ (2000) Automatic model selection for support vector machine. In: Visual information and information systems, pp 37–48

  21. Theodoridis S, Koutroumbas K (1998) Pattern recognition. Academic Press, New York

    MATH  Google Scholar 

  22. Suri JS, Liu K, Laxminarayan SN, Zeng X, Reden L (2002) Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans Inf Tech Biomed 6(1):8–28

    Article  Google Scholar 

  23. Angelini E, Holmes J, Laine A (2003) Segmentation of RT3D ultrasound with implicit deformable models without gradients. In: Proceedings ISPA, vol 2, pp 711–716

  24. Honigmann D, Ruisz J, Pottmann H (2002) Fast model based segmentation of ultrasound data using an active image. In: Proceedings of IEEE international symposium on biomedical imaging, pp 225–228

  25. Lin N, Yu W, Duncan JS (2003) Combinative multi-scale level set framework for echocardiographic image segmentation. Med Im Anal 7:529–537

    Article  Google Scholar 

  26. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Im Proc 7:266–277

    Article  Google Scholar 

  27. Savelonas MA, Maroulis DE, Iakovidis DK, Karkanis SA, Dimitropoulos N (2005) A variable background active contour model for thyroid nodule detection in ultrasound images. In: Proceedings of the IEEE international conference on image processing, vol 1, pp 17–20

  28. Kass M, Witkin A, Terzopoulos D (1998) Snakes: active contour models. Int J Comput Vis 8(2):321–331

    Google Scholar 

  29. Jain AK, Zhong Y, Lakshmanan S (1991) Object matching using deformable models. IEEE Trans Patt Anal Mach Intell 18(3):267–278

    Article  Google Scholar 

  30. Larsen OV, Radeva P, Marti E (1995) Guidelines for choosing optimal parameters of elasticity for snakes. In: Proceedings of the computer analysis of immages and patterns, pp 106–113

  31. Lai KF, Chin RT (1995) Deformable contours: modeling and extraction. IEEE Trans Patt Anal Mach Intell 17(11):1084–1090

    Article  Google Scholar 

  32. Chen DH, Sun YN (2000) A self-learning segmentation framework—the Taguchi approach. Comput Med Im Graph 24(5):283–296

    Article  MATH  Google Scholar 

  33. Morrel JM, Solimini S (1988) Segmentation of images by variational methods: a constructive approach. Rev Mat Univ Complut Madrid 1:169–182

    MathSciNet  Google Scholar 

  34. Osher S, Sethian J (1988) Fronts propagating with curvature- dependent speed: algorithms based on the Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  35. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison–Wesley, Reading

    MATH  Google Scholar 

  36. Grefenstette JJ (1986) Optimization of control parameters for genetic algorithms. IEEE Trans Syst Man Cybern 16(1):122–128

    Article  Google Scholar 

  37. Schmitt LM (2004) Theory of genetic algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling. Theor Comput Sci 310:181–231

    Article  MATH  Google Scholar 

  38. Min SH, Lee J, Han I (2006) Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Syst Appl 31(3):652–660

    Article  Google Scholar 

  39. Zhao XM, Cheung YM, Huang DS (2005) A novel approach to extracting features from motif content and protein composition for protein sequence classification. Neural Netw 18:1019–1028

    Article  Google Scholar 

  40. Plagianakos VP, Magoulas GD, Vrahatis MN (2001) Tumor detection in colonoscopic images using hybrid methods for on-line neural network training. In: Proceedings of international conference on neural networks and expert systems in medicine and healthcare, pp 59–64

  41. Pignalberi G, Cucchiara R, Cinque L, Levialdi S (2003) Tuning range segmentation by genetic algorithm. EURASIP J Appl Signal Process 8:780–790

    Article  Google Scholar 

  42. Kaus MR, Warfield SK, Jolesz FA, Kikinis R (1999) Segmentation of meningiomas and low grade gliomas in MRI. In: Proceedings of the international conference on medical image computing and computer-assisted intervention, pp 1–10

  43. Syswerda G (1999) A study of reproduction in generational and steady state genetic algorithms. In: Rawlings GJE (ed) Foundations of genetic algorithms. Kaufmann, San Mateo, pp 94–101

    Google Scholar 

  44. Goldberg DE, Korb B, Debb K (1989) Messy genetic algorithms: motivation, analysis and first results. Complex Syst 3(5):493–530

    MATH  Google Scholar 

  45. Eiben AE (2002) Multiparent Recombination in evolutionary computing, advances in evolutionary computing. In: Natural computing series. Springer, Berlin, pp 175–192

    Google Scholar 

  46. van Kemenade KM, Eiben AE (1995) Multi-parent recombination to overcome premature convergence in genetic algorithms. In: Proceedings of the Dutch conference on artificial intelligence, pp 137–146

  47. Bäck T (1993) Optimal mutation rates in genetic search. In: Proceedings of the international conference on genetic algorithms, pp 2–8

  48. Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5:96–101

    Article  Google Scholar 

  49. Goldberg DE (1989) Sizing population for serial and parallel genetic algorithms. In: Proceedings of the international conference on genetic algorithms, pp 70–79

  50. Bäck T, Hammel U, Schwefel HP (1997) Evolutionary computation: Comments on the history and current state. IEEE Trans Evol Comput 1(1):3–17

    Article  Google Scholar 

  51. Woltjer HH (1996) The intra- and interobserver variability of impedance cardiography in patients at rest during exercise. Physiol Meas 17:171–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris K. Iakovidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iakovidis, D.K., Savelonas, M.A., Karkanis, S.A. et al. A genetically optimized level set approach to segmentation of thyroid ultrasound images. Appl Intell 27, 193–203 (2007). https://doi.org/10.1007/s10489-007-0066-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-007-0066-y

Keywords

Navigation