Skip to main content
Log in

Strength differential effect and influence of strength criterion on burst pressure of thin-walled pipelines

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In the framework of the finite deformation theory, the plastic collapse analysis of thin-walled pipes subjected to the internal pressure is conducted on the basis of the unified strength criterion (USC). An analytical solution of the burst pressure for pipes with capped ends is derived, which includes the strength differential effect and takes the influence of strength criterion on the burst pressure into account. In addition, a USC-based analytical solution of the burst pressure for end-opened pipes under the internal pressure is obtained. By discussion, it is found that for the end-capped pipes, the influence of different yield criteria and the strength differential effect on the burst pressure are significant, while for the end-opened pipes, the burst pressure is independent of the specific form of the strength criterion and strength difference in tension and compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faupel, J. H. Yielding and bursting characteristics of heavy walled cylinders. Trans. ASME J. Appl. Mech., 78(5), 1031–1064 (1956)

    Google Scholar 

  2. Svensson, N. L. Bursting pressure of cylindrical and spherical pressure vessels. Trans. ASME J. Appl. Mech., 80(3), 89–96 (1958)

    Google Scholar 

  3. Folias, E. S. An axial crack in a pressurized cylindrical shell. Int. J. Fract. Mech., 1, 104–113 (1965)

    Google Scholar 

  4. Harvey, J. F. Theory and Design of Modern Pressure Vessels, 2nd ed., Van Nostrand Reinhold Company, New York (1974)

    Google Scholar 

  5. Yeh, M. K. and Kyriakides, S. On the collapse of inelastic thick-walled tubes under external pressure. Journal of Energy Resource Technology, 108, 35–47 (1986)

    Article  Google Scholar 

  6. Miller, A. G. Review of limit loads of structures containing defects. Int. J. Pres. Ves. Pip., 32, 197–327 (1988)

    Article  Google Scholar 

  7. Mok, D. H. B., Pick, R. J., Glover, A. J., and Hoff, R. Bursting of line pipe with long external corrosion. Int. J. Pres. Ves. Pip., 46, 195–215 (1991)

    Article  Google Scholar 

  8. Kyriakides, S., Park, T. D., and Netto, T. A. On the design of integral buckle arrestors for offshore pipelines. Appl. Ocean Res., 20, 95–104 (1998)

    Article  Google Scholar 

  9. Chen, Z. P., Zheng, J. Y., and Sun, G. Y. Bursting pressure test of ABS engineering plastics pipe. China Plastics Industry, 28(5), 36–38 (2000)

    Google Scholar 

  10. Zheng, C. X. and Wen, Q. Explosive experiment of mild steel pressure vessel and research on formula of explosive stress. Pres. Ves. Technol., 19(9), 9–12 (2002)

    Google Scholar 

  11. Zhu, X. K. and Leis, B. N. Theoretical and numerical predictions of burst pressure of pipelines. J. Pres. Ves. Technol., 129, 644–652 (2007)

    Article  Google Scholar 

  12. Netto, T. A., Ferraz, U. S., and Estefen, S. F. The effect of corrosion defects on the burst pressure of pipelines. J. Construct. Steel Res., 61, 1185–1204 (2005)

    Article  Google Scholar 

  13. Law, M. and Bowie, G. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe. Int. J. Pres. Ves. Pip., 84, 487–492 (2007)

    Article  Google Scholar 

  14. Chattopadhyay, J., Kushwaha, H. S., and Roos, E. Improved integrity assessment equations of pipe bends. Int. J. Pres. Ves. Pip., 86(7), 454–473 (2009)

    Article  Google Scholar 

  15. Law, M., Bowie, G., and Fletcher, L. Burst pressure and failure strain in pipeline, part 2: comparison of burst pressure and failure-strain formulas. Journal of Pipeline Integrity, 3, 102–106 (2004)

    Google Scholar 

  16. Christopher, T, Rama-Sarma, B. S. V., Potti, P. K. G., Rao, B. N., and Sankarnarayanasamy, K. A comparative study on failure pressure estimations of unflawed cylindrical vessels. Int. J. Pres. Ves. Pip., 79, 53–66 (2002)

    Article  Google Scholar 

  17. Cooper, W. E. The significance of the tensile test to pressure vessel design. Weld. J. Res. Suppl., 36, 49–56 (1957)

    Google Scholar 

  18. Hiller, M. J. Tensile plastic instability of thin tubes. J. Mech. Eng. Sci., 4, 251–256 (1962)

    Article  Google Scholar 

  19. Updike, D. P. and Kalnins, A. Tensile plastic instability of axisymmetric pressure vessels. J. Pres. Ves. Technol., 120, 6–11 (1998)

    Article  Google Scholar 

  20. Stewart, G. and Klever, F. J. An analytical model to predict the burst capacity of pipelines. Proceedings of the 13th International Conference of Offshore Mechanics and Arctic Engineering, The Society, New York, 177–188 (1994)

    Google Scholar 

  21. Zhu, X. K. and Leis, B. N. Average shear stress yield criterion and its application to plastic collapse analysis of pipelines. Int. J. Pres. Ves. Pip., 83, 663–671 (2006)

    Article  Google Scholar 

  22. Feng, J. J., Zhang, J. Y., Zhang, P., Tan, Y. Q., and Han, L. F. Limit analysis of thick-walled tubes in complex stress state (in Chinese). Journal of Engineering Mechanics, 21, 188–192 (2004)

    Google Scholar 

  23. Yu, M. H. and He, L. N. A new model and theory on yield and failure of materials under complex stress state. Mechanical Behaviour of Materials, 3, 841–846 (1991)

    Google Scholar 

  24. Fan, S. C., Yu, M. H., and Yang, S. Y. On the unification of yield criteria. Trans. ASME J. Appl. Mech., 68, 341–343 (2002)

    Article  Google Scholar 

  25. Yu, M. H. Advance in strength theory of material and complex stress state in the 20th century. Appl. Mech. Rev., 55(3), 169–218 (2002)

    Article  Google Scholar 

  26. Yu, M. H. Twin shear stress yield criterion. Int. J. Mech. Sci., 25(1), 71–74 (1983)

    Article  Google Scholar 

  27. Jonas, J. J., Holt, R. A., and Coleman, C. E. Plastic instability in tension and compression. Acta Metallurgica, 24, 911–918 (1976)

    Article  Google Scholar 

  28. Crossland, B. and Bones, J. A. The ultimate strength of thick walled cylinders subjected to internal pressure. Engineering, 179, 80–83 (1955)

    Google Scholar 

  29. Costantino, C. J. The strength of thin-walled cylinders subjected to dynamic internal pressures. Trans. ASME J. Appl. Mech., 32, 104–107 (1965)

    Article  Google Scholar 

  30. Hill, R. The Mathematical Theory of Plasticity, Oxford University Press, London (1950)

    MATH  Google Scholar 

  31. Zhu, X. K. and Leis, B. N. Strength criteria and analytic predictions of failure pressures in line pipes. International Society of Offshore and Polar Engineers, 14, 125–131 (2004)

    Google Scholar 

  32. Li, X. W., Zhao, J. H., and Wang, Q. Y. Unified stresses solution for sheet forming. Adv. Mater. Res., 463–464, 629–633 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-qiang Zhang  (张永强).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51079128 and 11172265) and the Natural Science Foundation of Zhejiang Province of China (No.Y1101107)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Cw., Wang, Lz. & Zhang, Yq. Strength differential effect and influence of strength criterion on burst pressure of thin-walled pipelines. Appl. Math. Mech.-Engl. Ed. 33, 1361–1370 (2012). https://doi.org/10.1007/s10483-012-1628-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1628-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation