Skip to main content
Log in

Flow of micropolar fluid between two orthogonally moving porous disks

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The unsteady, laminar, incompressible, and two-dimensional flow of a micropolar fluid between two orthogonally moving porous coaxial disks is considered. The extension of von Karman’s similarity transformations is used to reduce the governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in the dimensionless form. The analytical solutions are obtained by employing the homotopy analysis method (HAM). The effects of various physical parameters such as the expansion ratio and the permeability Reynolds number on the velocity fields are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connor, J. J., Boyd, J., and Avallone, E. A. Standard Handbook of Lubrication Engineering, McGraw-Hill, New York (1968)

    Google Scholar 

  2. Elcrat, A. R. On the radial flow of a viscous fluid between porous disks. Archive for Rational Mechanics and Analysis, 61, 91–96 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rasmussen, H. Steady viscous flow between two porous disks. Zeitschrift für Angewandte Mathematik und Physik, 21, 187–195 (1970)

    Article  Google Scholar 

  4. Berman, A. S. Laminar flow in channels with porous walls. Journal of Applied Physics, 24, 1232–1235 (1953)

    Article  MATH  Google Scholar 

  5. Eringen, A. C. Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications, 38, 480–496 (1972)

    Article  MATH  Google Scholar 

  6. Aero, E. L., Bulygin, A. N., and Kuvshinskii, E. V. Asymmetric hydromechanics. Journal of Applied Mathematics and Mechanics, 29(2), 297–308 (1965)

    Article  Google Scholar 

  7. Anwar, K.M., Ashraf, M., and Syed, K. S. Numerical solution of steady viscous flow of a micropolar fluid driven by injection between two porous disks. Applied Mathematics and Computation, 179, 1–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ashraf, M., Anwar, K. M., and Syed, K. S. Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk. Applied Mathematical Modelling, 33, 1933–1943 (2009)

    Article  MATH  Google Scholar 

  9. Ariman, T., Turk, M. A., and Sylvester, N. D. Microcontinuum fluid mechanics-a review. International Journal of Engineering Science, 11, 905–930 (1973)

    Article  MATH  Google Scholar 

  10. Ariman, T., Turk, M. A., and Sylvester, N. D. Application of microcontinuum fluid mechanics-a review. International Journal of Engineering Science, 12, 273–293 (1974)

    Article  MATH  Google Scholar 

  11. Eringen, A. C. Microcontinuum Field Theories II: Fluent Media, Springer, New York (2001)

    MATH  Google Scholar 

  12. Guram, G. S. and Anwar, M. Steady flow of a micropolar fluid due to a rotating disk. Journal of Engineering Mathematics, 13, 223–234 (1979)

    Article  MATH  Google Scholar 

  13. Guram, G. S. and Anwar, M. Micropolar flow due to a rotating disc with suction and injection. Zeitschrift für Angewandte Mathematik und Mechanik, 61, 589–605 (1981)

    Article  MATH  Google Scholar 

  14. Atif, N. and Tahir, M. Analysis of flow and heat transfer of viscous fluid between contracting rotating disks. Applied Mathematical Modelling, 35, 3154–3165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Uchida, S. and Aoki, H. Unsteady flows in a semi-infinite contracting or expanding pipe. Journal of Fluid Mechanics, 82, 371–387 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohki, M. Unsteady flows in a porous, elastic, circular tube-I: the wall contracting or expanding in an axial direction. Bulletin of the JSME, 23, 679–686 (1980)

    Article  Google Scholar 

  17. Barron, J., Majdalani, J., and van Moorhem, W. K. A novel investigation of the oscillatory field over a transpiring surface. Journal of Sound and Vibration, 235, 281–297 (2000)

    Article  Google Scholar 

  18. Majdalani, J., Zhou, C., and Dawson, C. A. Two-dimensional viscous flows between slowly expanding or contracting walls with weak permeability. Journal of Biomechanics, 35, 1399–1403 (2002)

    Article  Google Scholar 

  19. Majdalani, J. and Zhou, C. Moderate-to-large injection and suction driven channel flows with expanding or contracting walls. Zeitschrift für Angewandte Mathematik und Mechanik, 83(3), 181–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dauenhauer, C. E. and Majdalani, J. Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Physics of Fluids, 15, 1485–1495 (2003)

    Article  MathSciNet  Google Scholar 

  21. Asghar, S., Mushtaq, M., and Hayat, T. Flow in a slowly deforming channel with weak permeability: an analytical approach. Nonlinear Analysis: Real World Applications, 11, 555–561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dinarvand, S. and Rashidi, M. M. A reliable treatment of a homotopy analysis method for twodimensional viscous flow in a rectangular domain bounded by two moving porous walls. Nonlinear Analysis: Real World Applications, 11, 1502–1512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Si, X. H., Zheng, L. C., Zhang, X. X., and Chao, Y. The flow of a micropolar fluid through a porous channel with expanding or contracting walls. Central European Journal of Physics, 9, 825–834 (2011)

    Article  Google Scholar 

  24. Si, X. H., Zheng, L. C., Zhang, X. X., Si, X. Y., and Yang, J. H. Flow of a viscoelastic through a porous channel with expanding or contracting walls. Chinese Physics Letters, 28(4), 044702 (2011)

    Article  Google Scholar 

  25. Xu, H., Lin, Z. L., Liao, S. J., Wu, J. Z., and Majdalani, J. Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonlly moving walls. Physics of Fluids, 22, 053601 (2010)

    Article  Google Scholar 

  26. Liao, S. J. Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman Hall/CRC Press, Rocal Raton (2003)

    Book  Google Scholar 

  27. Liao, S. J. On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 147, 499–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hayat, T. and Khan, M. Homotopy solution for a generalized second grade fluid past a porous plate. Non-Linear Dynamics, 42, 395–405 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hayat, T., Khan, M., and Asghar, S. Magnetohydrodynamic flow of an Oldroyd 6-constant fluid. Applied Mathematics and Computation, 155, 417–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Abbas, Z., Sajid, M., and Hayat, T. MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel. Theoretical and Computational Fluid Dynamics, 20, 229–238 (2006)

    Article  MATH  Google Scholar 

  31. Sajid, M., Hayat, T., and Asghar, S. On the analytic solution of the steady flow of a fourth grade fluid. Physics Letters A, 355, 18–26 (2006)

    Article  Google Scholar 

  32. Abbasbandy, S., Shivanian, E., and Vajravelu, K. Mathematical properties of h-curve in the frame work of the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 16, 4268–4275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Abbasbandy, S. Approximate analytical solutions to thermo-poroelastic equations by means of the iterated homotopy analysis method. International Journal of Computer Mathematics, 88, 1763–1775 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Abbasbandy, S., Magyari, E., and Shivanian, E. The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Communications in Nonlinear Science and Numerical Simulation, 14, 3530–3536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rees, D. A. S. and Pop, I. Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate. Journal of Applied Mathematics, 61, 179–197 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Guram, G. S. and Smith, A. C. Stagnation flows of micropolar fluids with strong and weak interactions. Computers and Mathematics with Applications, 6, 213–233 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Von Karman, T. Über laminare und turbulente Reibung. Zeitschrift für Angewandte Mathematik und Mechanik, 1, 233–252 (1921)

    Article  MATH  Google Scholar 

  38. Liao, S. J. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-hui Si  (司新辉).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51004013, 50936003, 51174028, and 50905013), the Research Foundation of Engineering Research Institute of University of Science and Technology Beijing (No.Yj2011-015), and the Fundamental Research Funds for the Central Universities (No.T-RF-TP-12-108A)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, Xh., Zheng, Lc., Zhang, Xx. et al. Flow of micropolar fluid between two orthogonally moving porous disks. Appl. Math. Mech.-Engl. Ed. 33, 963–974 (2012). https://doi.org/10.1007/s10483-012-1598-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1598-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation