Skip to main content
Log in

Analytical Investigation of Flow of a Micropolar Fluid Between Disks with Vertical Magnetic Field

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Analytical investigation is held on the steady and axisymmetric flow model in a porous medium containing a micropolar fluid between two disks. Using the proper similarity transformation, the system of velocity and microrotation partial differential equations is transformed into a non-dimensional form. The differential transform technique, which produces an output in the form of a series, is used to determine the estimated solution to these equations. On this spot, there is a detailed discussion and visual representation of how the micropolar parameter, Reynolds number, and magnetic field parameter affect the velocity and microrotation profiles. The numerical values of couple stress and the skin friction are compared to data that have already been published. The findings produced by DTM are compared with the data acquired by numerical techniques to verify the method’s correctness and validity. It can be found that the behavior of the microrotation profile is very close to the normal graph from the lower to the upper disk. The magnetic field effect will assist in improving the performance of oil extraction drilling systems used in mining industry and the other geothermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964). https://doi.org/10.1016/0020-7225(64)90005-9

    Article  MathSciNet  Google Scholar 

  2. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  3. Eringen, A. C.: Microcontinuum field theories: I. Foundations and solids. Springer Science and Business Media (2012)

  4. Lukaszewicz, G. Micropolar Fluids: Theory and applications; Springer Science and Business Media, (1999)

  5. Rashidi, M.M., Abelman, S., FreidooniMehr, N.: Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transf. 62, 515–525 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004

    Article  Google Scholar 

  6. Mahanthesh, B., Gireesha, B.J., Shehzad, S.A., Rauf, A., Kumar, P.B.S.: Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Phys. B Condens. Matter 537, 98–104 (2018). https://doi.org/10.1016/j.physb.2018.02.009

    Article  Google Scholar 

  7. Soid, S.K., Ishak, A., Pop, I.: MHD flow and heat transfer over a radially stretching/shrinking disk. Chin. J. Phys. 56, 58–66 (2018). https://doi.org/10.1016/j.cjph.2017.11.022

    Article  Google Scholar 

  8. Aziz, A., Alsaedi, A., Muhammad, T., Hayat, T.: Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk. Results Phys. 8, 785–792 (2018). https://doi.org/10.1016/j.rinp.2018.01.009

    Article  Google Scholar 

  9. Agarwal, R., Kumar Mishra, P.: Analytical solution of the MHD forced flow and heat transfer of a non-newtonian visco-inelastic fluid between two infinite rotating disks. Mater. Today Proc. 46, 10153–10163 (2021). https://doi.org/10.1016/j.matpr.2020.10.632

    Article  Google Scholar 

  10. Krishna, M.V., Chamkha, A.J.: Hall effects on MHD squeezing flow of a water-based nanofluid between two parallel disks. J. Porous Media (2019). https://doi.org/10.1615/JPorMedia.2018028721

    Article  Google Scholar 

  11. Ibrahim, M.: Numerical analysis of time-dependent flow of viscous fluid due to a stretchable rotating disk with heat and mass transfer. Results Phys. 18, 103242 (2020). https://doi.org/10.1016/j.rinp.2020.103242

    Article  Google Scholar 

  12. Gupta, R.: Flow of a second-order fluid due to disk rotation. In: Advances in Mathematical and Computational Modeling of Engineering Systems (pp. 315–333). CRC Press (2023)

  13. Turkyilmazoglu, M.: Fluid flow and heat transfer over a rotating and vertically moving disk. Phys. Fluids 30, 063605 (2018). https://doi.org/10.1063/1.5037460

    Article  Google Scholar 

  14. Agarwal, R.: Analytical study of micropolar fluid flow between two porous disks. PalArchs J. Archaeol. Egypt Egyptol. 17, 903–924 (2020)

    Google Scholar 

  15. Venerus, D.C.: Squeeze flows in liquid films bound by porous disks. J. Fluid Mech. 855, 860–881 (2018). https://doi.org/10.1017/jfm.2018.635

    Article  MathSciNet  Google Scholar 

  16. Waqas, H., Shehzad, S.A., Khan, S.U., Imran, M.: Novel numerical computations on flow of nanoparticles in porous rotating disk with multiple slip effects and microorganisms. J. Nanofluids 8, 1423–1432 (2019). https://doi.org/10.1166/jon.2019.1702

    Article  Google Scholar 

  17. Asma, M., Othman, W.A.M., Muhammad, T., Mallawi, F., Wong, B.R.: Numerical study for magnetohydrodynamic flow of nanofluid due to a rotating disk with binary chemical reaction and arrhenius activation energy. Symmetry 11(10), 1282 (2019). https://doi.org/10.3390/sym11101282

    Article  Google Scholar 

  18. Devaki, B., Pai, N.P., Vs SK: Analysis of MHD flow and heat transfer of casson fluid flow between porous disks. J Adv Res Fluid Mech Therm Sci 83(1), 46–60 (2021)

    Article  Google Scholar 

  19. Upadhya, S.M., Devi, R.L.V.R., Raju, C.S.K., Ali, H.M.: Magnetohydrodynamic nonlinear thermal convection nanofluid flow over a radiated porous rotating disk with internal heating. J. Therm. Anal. Calorim.Calorim. 143, 1973–1984 (2021). https://doi.org/10.1007/s10973-020-09669-w

    Article  Google Scholar 

  20. Usman Lin, P., Ghaffari, A.: Steady flow and heat transfer of the power-law fluid between two stretchable rotating disks with non-uniform heat source/sink. J Therm Anal Calorimet 146, 1735–1749 (2021)

    Article  Google Scholar 

  21. Agarwal, R.: Heat and mass transfer in electrically conducting micropolar fluid flow between two stretchable disks. Mater. Today Proc. 46, 10227–10238 (2021). https://doi.org/10.1016/j.matpr.2020.11.614

    Article  Google Scholar 

  22. Doh, D.H., Muthtamilselvan, M.: Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk. Int. J. Mech. Sci. 130, 350–359 (2017). https://doi.org/10.1016/j.ijmecsci.2017.06.029

    Article  Google Scholar 

  23. Takhar, H.S., Bhargava, R., Agrawal, R.S., Balaji, A.V.S.: Finite element solution of micropolar fluid flow and heat transfer between two porous discs. Int. J. Eng. Sci. 38, 1907–1922 (2000). https://doi.org/10.1016/S0020-7225(00)00019-7

    Article  Google Scholar 

  24. Sajid, M., Sadiq, M.N., Ali, N., Javed, T.: Numerical simulation for homann flow of a micropolar fluid on a spiraling disk. Eur. J. Mech. BFluids 72, 320–327 (2018). https://doi.org/10.1016/j.euromechflu.2018.06.008

    Article  MathSciNet  Google Scholar 

  25. Lubrication Effects on Axisymmetric Flow of a Micropolar Fluid by a Spiraling Disk | SpringerLink Available online: https://link.springer.com/article/https://doi.org/10.1007/s40430-020-02469-1 Accessed on 2 Sep 2023

  26. Mohyud-Din, S.T., Jan, S.U., Khan, U., Ahmed, N.: MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions. Neural Comput. Appl.Comput. Appl. 29, 793–801 (2018). https://doi.org/10.1007/s00521-016-2493-3

    Article  Google Scholar 

  27. Bhat, A., Katagi, N.N.: Micropolar fluid flow between a non-porous disk and a porous disk with slip: keller-box solution. Ain Shams Eng. J. 11, 149–159 (2020). https://doi.org/10.1016/j.asej.2019.07.006

    Article  Google Scholar 

  28. Bhat, A., Katagi, N.N.: Magnetohydrodynamic flow of micropolar fluid and heat transfer between a porous and a non-porous disk. Arch. Akad. BARU Artic. 75, 59–78 (2021)

    Google Scholar 

  29. Pasha, P., Mirzaei, S., Zarinfar, M.: Application of numerical methods in micropolar fluid flow and heat transfer in permeable plates. Alex. Eng. J. 61, 2663–2672 (2022). https://doi.org/10.1016/j.aej.2021.08.040

    Article  Google Scholar 

  30. Gupta, R.: Comparative study of micropolar fluid flow between two disks. Harbin Gongye Daxue Xuebao J Harbin Inst Technol. 54, 61–76 (2022)

    Google Scholar 

  31. Ahmad, S., Ashraf, M., Ali, K.: Numerical simulation of viscous dissipation in a micropolar fluid flow through a porous medium. J. Appl. Mech. Tech. Phys. 60, 996–1004 (2019). https://doi.org/10.1134/S0021894419060038

    Article  MathSciNet  Google Scholar 

  32. Sharma, K., Kumar, S., Vijay, N.: Insight into the motion of water-copper nanoparticles over a rotating disk moving upward/ downward with viscous dissipation. Int. J. Mod. Phys. B 36, 2250210 (2022). https://doi.org/10.1142/S0217979222502101

    Article  Google Scholar 

  33. Kumar, S., Sharma, K.: Mathematical modeling of MHD flow and radiative heat transfer past a moving porous rotating disk with hall effect. Multidiscip. Model. Mater. Struct.. Model. Mater. Struct. 18, 445–458 (2022). https://doi.org/10.1108/MMMS-04-2022-0056

    Article  Google Scholar 

  34. Kumar, S., Sharma, K.: Impacts of stefan blowing on reiner-rivlin fluid flow over moving rotating disk with chemical reaction. Arab. J. Sci. Eng. 48, 2737–2746 (2023). https://doi.org/10.1007/s13369-022-07008-9

    Article  Google Scholar 

  35. Kumar, S., Sharma, K.: Darcy-forchheimer fluid flow over stretchable rotating disk moving upward/downward with heat source/sink. Spec Top Rev Porous Med: Int J (2022). https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2022043951

    Article  Google Scholar 

  36. Kumar, S., Sharma, K.: Entropy optimization analysis of marangoni convective flow over a rotating disk moving vertically with an inclined magnetic field and nonuniform heat source. Heat Transf. 52, 1778–1805 (2023). https://doi.org/10.1002/htj.22763

    Article  Google Scholar 

  37. Sharma, K., Kumar, S.: Impacts of low oscillating magnetic field on ferrofluid flow over upward/downward moving rotating disk with effects of nanoparticle diameter and nanolayer. J. Magn. Magn. Mater.Magn. Magn. Mater. 575, 170720 (2023). https://doi.org/10.1016/j.jmmm.2023.170720

    Article  Google Scholar 

  38. Kumar, S., Sharma, K., Makinde, O.D., Joshi, V.K., Saleem, S.: Entropy generation in water conveying nanoparticles flow over a vertically moving rotating surface: keller box analysis. Int J Num Methods Heat Fluid Flow (2023). https://doi.org/10.1108/HFF-05-2023-0259

    Article  Google Scholar 

  39. Zhou, J.K.: Differential transformation and its applications for electrical circuits. In; Huazhong University Press, Wuhan, China (1986)

    Google Scholar 

  40. Usman, M., Hamid, M., Khan, U., Mohyud Din, S.T., Iqbal, M.A., Wang, W.: Differential transform method for unsteady nanofluid flow and heat transfer. Alex. Eng. J. 57, 1867–1875 (2018). https://doi.org/10.1016/j.aej.2017.03.052

    Article  Google Scholar 

  41. Keimanesh, M., Rashidi, M.M., Chamkha, A.J., Jafari, R.: Study of a third grade non-newtonian fluid flow between two parallel plates using the multi-step differential transform method. Comput. Math. Appl.. Math. Appl. 62, 2871–2891 (2011). https://doi.org/10.1016/j.camwa.2011.07.054

    Article  MathSciNet  Google Scholar 

  42. Hatami, M., Jing, D.: Differential transformation method for newtonian and non-newtonian nanofluids flow analysis: compared to numerical solution. Alex. Eng. J. 55, 731–739 (2016). https://doi.org/10.1016/j.aej.2016.01.003

    Article  Google Scholar 

  43. Agarwal, R. Squeezing MHD: Flow along with heat transfer between parallel plates by using the differential transform method. Cтиcнeння MHD пoтoкy paзoм iз тeплoпepeдaчeю мiж пapaлeльними плacтинaми зa дoпoмoгoю мeтoдy дифepeнцiaльнoгo пepeтвopeння (2022)

  44. Gupta, R., Selvam, J., Vajravelu, A., Nagapan, S.: Analysis of a squeezing flow of a casson nanofluid between two parallel disks in the presence of a variable magnetic field. Symmetry 15, 120 (2023). https://doi.org/10.3390/sym15010120

    Article  Google Scholar 

  45. Balazadeh, N., Sheikholeslami, M., Ganji, D.D., Li, Z.: Semi analytical analysis for transient eyring-powell squeezing flow in a stretching channel due to magnetic field using DTM. J. Mol. Liq. 260, 30–36 (2018). https://doi.org/10.1016/j.molliq.2018.03.066

    Article  Google Scholar 

  46. Gupta, R., Agrawal, D.: Flow analysis of a micropolar nanofluid between two parallel disks in the presence of a magnetic field. J. Nanofluids 12, 1320–1326 (2023). https://doi.org/10.1166/jon.2023.2021

    Article  Google Scholar 

  47. Awati, V.B., Jyoti, M., Bujurke, N.M.: Series solution of steady viscous flow between two porous disks with stretching motion. J. Nanofluids 7, 982–994 (2018). https://doi.org/10.1166/jon.2018.1512

    Article  Google Scholar 

  48. Agarwal, R. An analytical study of non-newtonian visco-inelastic fluid flow between two stretchable rotating disks.

  49. Gupta, R.: Homotopy perturbation method for the MHD second-order fluid flow through a channel with permeable sides. Harbin Gongye Daxue XuebaoJournal Harbin Inst Technol. 54, 38–45 (2022)

    Google Scholar 

  50. Ganji, D.D., Abbasi, M., Rahimi, J., Gholami, M., Rahimipetroudi, I.: On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM. Front. Mech. Eng. 9, 270–280 (2014). https://doi.org/10.1007/s11465-014-0303-0

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

RG Conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing—original draft preparation, visualization, supervision.

Corresponding author

Correspondence to Reshu Gupta.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R. Analytical Investigation of Flow of a Micropolar Fluid Between Disks with Vertical Magnetic Field. Int. J. Appl. Comput. Math 10, 91 (2024). https://doi.org/10.1007/s40819-023-01674-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01674-5

Keywords

Navigation