Skip to main content
Log in

Effects of viscous dissipation and heat generation (absorption) in a thermal boundary layer of a non-Newtonian fluid over a continuously moving permeable flat plate

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The problem of boundary-layer flow and heat transfer of a non-Newtonian power-law fluid over a moving porous infinite flat plate in the presence of viscous dissipation and heat generation or absorption is investigated analytically. It is assumed that both the momentum and the energy equations are coupled by the stress friction factor, and an assumption is introduced regarding the heat-transfer index. It is found that exact analytical solutions for velocity and temperature exist only for pseudoplastic fluids in the presence of suction at the surface. The effects of the suction parameter, Eckert number, and the heat generation or absorption parameter on the velocity and temperature profiles, as well as on the skin-friction coefficient and Nusselt number are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Sakiadis, “Boundary-layer behavior on continuous solid surfaces. 1. Boundary-layer equations for two-dimensional and axisymmetric flow,” AIChE J., 7, 26–28 (1961).

    Article  Google Scholar 

  2. B. C. Sakiadis, “Boundary-layer behavior on continuous solid surfaces. 2. Boundary-layer on a continuous flat surface,” AIChE J., 7, 221–225 (1961).

    Article  Google Scholar 

  3. L. E. Erickson, L. T. Fan, and V. G. Fox, “Heat and mass transfer on a moving continuous flat plate with suction or injection,” Ind. Eng. Chem. Fundam., 5, 19–25 (1966).

    Article  Google Scholar 

  4. F. K. Tsou, E. M. Sparrow, and R. J. Goldestein, “Flow and heat transfer in the boundary-layer on a continuous moving surface,” Int. J. Heat Mass Transfer, 10, 219–235 (1967).

    Article  Google Scholar 

  5. C.-H. Chen, “Forced convection over a continuous sheet with suction or injection moving in a flowing fluid,” Acta Mech., 138, 1–11 (1999).

    Article  MATH  Google Scholar 

  6. T. Fang, “Similarity solutions for a moving-flat plate thermal boundary layer,” Acta Mech., 163, 161–172 (2003).

    Article  MATH  Google Scholar 

  7. R. Cortell, “Flow and heat transfer in a moving fluid over a moving flat surface,” Theor. Comput. Fluid Dyn., 21, 435–446 (2007).

    Article  MATH  Google Scholar 

  8. W. R. Schowalter, “The application of boundary layer theory to power-law pseudoplastic fluid: Similar solutions,” AIChE J., 6, 24–28 (1960).

    Article  Google Scholar 

  9. A. Acrivos, M. J. Shah, and E. E. Petersen, “Momentum and heat transfer in laminar boundary layer flows of non-Newtonian fluids past external surfaces,” AIChE J., 6, 312–317 (1960).

    Article  Google Scholar 

  10. J. N. Kapur and R. C. Srivastava, “Similar solutions of the boundary layer equations for power-law fluids,” Z. Angew. Math. Phys., 14, 383–388 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Y. Lee and W. F. Ames, “Similarity solutions for non-Newtonian fluids,” AIChE J., 12, 700–708 (1966).

    Article  Google Scholar 

  12. B. M. Berkovskii, “A class of self-similar boundary layer problems for rheological power-law fluids,” Int. Chem. Eng., 6, 187–201 (1966).

    Google Scholar 

  13. A. G. Hansen and R. Y. Na, “Similarity solutions of laminar incompressible boundary layer equations of non-Newtonian fluids,” Trans. ASME, J. Basic Eng., 40, 71–74 (1968).

    Google Scholar 

  14. E. R. Thompson and W. T. Snyder, “Drag reduction of a non-Newtonian fluid by fluid injection at the wall,” J. Hydronaut., 2, 177–180 (1968).

    Article  Google Scholar 

  15. E. R. Thompson and W. T. Snyder, “Laminar boundary-layer flows of Newtonian fluids with non-Newtonian fluid injections,” J. Hydronaut., 4, 86–91 (1970).

    Article  Google Scholar 

  16. C. Y. Liu, “Asymptotic suction flow of power-law fluids,” J. Hydronaut., 7, 135–136 (1973).

    Article  Google Scholar 

  17. M. J. Huang and B. L. Lin, “Forced convective flow over a flat plate in non-Newtonian power-law fluids,” Wärme- und Stoffübrtragung, 27, 399–404 (1992).

    Article  ADS  Google Scholar 

  18. T. G. Howell, D. R. Jeng, and K. J. De Witt, “Momentum and heat transfer on a continuous moving surface in a power law fluid,” Int. J. Heat Mass Transfer, 40, 1853–1861 (1997).

    Article  MATH  Google Scholar 

  19. J. H. Rao, D. R. Jeng, and K. J. De Witt, “Momentum and heat transfer in a power-law fluid with arbitrary injection/suction at a moving wall,” Int. J. Heat Mass Transfer, 42, 2837–2847 (1999).

    Article  MATH  Google Scholar 

  20. A. K. Sahu, M. N. Mathur, P. Chaturani, and S. Saxena Bharatiya, “Momentum and heat transfer from a continuous moving surface to a power-law fluid,” Acta Mech., 142, 119–131 (2000).

    Article  MATH  Google Scholar 

  21. P. D. Ariel, “On the flow of power-law fluid over a stretching sheet-techniques and solutions,” Acta Mech., 156, 13–27 (2002).

    Article  MATH  Google Scholar 

  22. A. S. Gupta, J. C. Misra, and M. Reza, “Effects of suction or blowing on the velocity and temperature distribution in the flow past a porous flat plate of a power-law fluid,” Fluid Dyn. Res., 32, 283–294 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. R. Cortell, “A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet,” Appl. Math. Comput., 168, 557–566 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  24. M. A. A. Mahmoud and M. A.-E. Mahmoud, “Analytical solutions of hydromagnetic boundary-layer flow of a non-Newtonian power-law fluid past a continuously moving surface,” Acta Mech., 181, 83–89 (2006).

    Article  MATH  Google Scholar 

  25. A. A. M. Mahmoud amd A. M. Megahed, “On steady hydromagnetic boundary-layer flow of a non-Newtonian power-law fluid over a continuously moving surface with suction,” Chem. Eng. Comm., 194, 1457–1469 (2007).

    Article  Google Scholar 

  26. I. Pop and R. S. R. Gorla, “Mixed convection similarity solutions of a non-Newtonian fluid on a horizontal surface,” Wärme- und Stoffübertragung, 26, 57–63 (1990).

    Article  ADS  Google Scholar 

  27. R. S. R. Gorla, J. K. Lee, S. Nakamura, I. Pop, “Effects of transverse magnetic field on mixed convection in wall plume of power-law fluids,” Int. J. Eng. Sci., 31, 1035–1045 (1993).

    Article  MATH  Google Scholar 

  28. J. K. Lee, R. S. R. Gorla, S. Nakamura, and I. Pop, “Mixed convection in wall plume of power-law fluids,” Acta Mech., 102, 47–58 (1994).

    Article  MATH  Google Scholar 

  29. A. Chamkha, “Similarity solution for thermal boundary layer on a stretched surface of a non-Newtonian fluid,” Int. Comm. Heat Mass Transfer, 24, 643–652 (1997).

    Article  Google Scholar 

  30. M. C. Ece and E. Büyük, “Similarity solutions for free convection to power-law fluids from a heated vertical plate,” Appl. Math. Lett., 15, 1–5 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Zheng, X. Zhang, and J. He, “Suitable heat transfer model for self-similar laminar boundary in power law fluids,” J. Thermal Sci., 13, 150–154 (2004).

    Article  ADS  Google Scholar 

  32. L. C. Zheng, X. Zhang, and C. Q. Lu, “Heat transfer for power-law non-Newtonian fluids,” Chinese Phys. Lett., 23, 3301–3304 (2006).

    Article  ADS  Google Scholar 

  33. H. Zhang, X. Zhang, and L. Zheng, “Numerical study of thermal boundary layer on a continuous moving surface in power law fluids,” J. Thermal Sci., 16, 243–247 (2007).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. A. Mahmoud.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 5, pp. 107–114, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, M.A.A., Megahed, A.M. Effects of viscous dissipation and heat generation (absorption) in a thermal boundary layer of a non-Newtonian fluid over a continuously moving permeable flat plate. J Appl Mech Tech Phy 50, 819–825 (2009). https://doi.org/10.1007/s10808-009-0111-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-009-0111-1

Key words

Navigation