Skip to main content
Log in

MHD stagnation point flow towards heated shrinking surface subjected to heat generation/absorption

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The magnetohydrodynamic (MHD) stagnation point flow of micropolar fluids towards a heated shrinking surface is analyzed. The effects of viscous dissipation and internal heat generation/absorption are taken into account. Two explicit cases, i.e., the prescribed surface temperature (PST) and the prescribed heat flux (PHF), are discussed. The boundary layer flow and energy equations are solved by employing the homotopy analysis method. The quantities of physical interest are examined through the presentation of plots/tabulated values. It is noticed that the existence of the solutions for high shrinking parameters is associated closely with the applied magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahapatra, T. R. and Gupta, A. S. Magnetohydrodynamics stagnation point flow towards a stretching sheet. Acta Mechanica, 152, 191–196 (2001)

    Article  MATH  Google Scholar 

  2. Nazar, R., Amin, N., Filip, D., and Pop, I. Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. International Journal of Engineering Science, 42, 1241–1253 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lok, Y. Y., Amin, N., and Pop, I. Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface. International Journal of Thermal Sciences, 45, 1149–1157 (2006)

    Article  Google Scholar 

  4. Lok, Y. Y., Amin, N., and Pop, I. Mixed convection flow near a non-orthognal stagnation point towards a stretching vertical plate. International Journal of Heat and Mass Transfer, 50, 4855–4863 (2007)

    Article  MATH  Google Scholar 

  5. Wang, C. Y. Off-centered stagnation flow towards a rotating disc. International Journal of Engineering Science, 46, 391–396 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, H., Liao, S. J., and Pop, I. Series solution of unsteady boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface. Acta Mechanica, 184, 87–101 (2006)

    Article  MATH  Google Scholar 

  7. Nadeem, S., Hussain, M., and Naz, M. MHD stagnation flow of a micropolar fluid through a porous medium. Meccanica, 45, 869–880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumari, M. and Nath, G. Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field. International Journal of Non-Linear Mechanics, 44, 1048–1055 (2009)

    Article  MATH  Google Scholar 

  9. Hayat, T., Abbas, Z., and Sajid, M. MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos, Solitons and Fractals, 39, 840–848 (2009)

    Article  MATH  Google Scholar 

  10. Labropulu, F., Li, D., and Pop, I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer. International Journal of Thermal Sciences, 49, 1042–1050 (2010)

    Article  Google Scholar 

  11. Wang, C. Y. and Miklavic, M. Viscous flow due to a shrinking sheet. Quarterly Applied Mathematics, 64, 283–290 (2006)

    MATH  Google Scholar 

  12. Fang, T. and Zhong, Y. Viscous flow over a shrinking sheet with an arbitrary surface velocity. Communications in Nonlinear Science and Numerical Simulation, 15, 3768–3776 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cortell, R. On a certain boundary value problem arising in shrinking sheet flows. Applied Mathematics and Computation, 217, 4086–4093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nadeem, S. and Awais, M. Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity. Physics Letters A, 372, 4965–4972 (2008)

    Article  MATH  Google Scholar 

  15. Hayat, T., Iram, S., Javed, T., and Asghar, S. Shrinking flow of second grade fluid in a rotating frame: an analytic solution. Communications in Nonlinear Science and Numerical Simulation, 15, 2932–2941 (2010)

    Article  MATH  Google Scholar 

  16. Eringen, A. C. Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  17. Eringen, A. C. Microcontinuum Field Theories, II: Fluent Media, Springer, New York (2001)

    Google Scholar 

  18. Devakar, M. and Iyengar, T. K. V. Stokes’ first problem for a micropolar fluid through state-space approach. Applied Mathematical Modelling, 33, 924–936 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ali, N. and Hayat, T. Peristaltic flow of a micropolar fluid in an asymmetric channel. Computers and Mathematics with Applications, 55, 589–608 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Magyari, E. and Kumaran, V. Generalized Crane flows of micropolar fluids. Communications in Nonlinear Science and Numerical Simulation, 15, 3237–3240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ariman, T., Turk, M. A., and Sylvester, N. D. Microcontinuum fluid mechanics — a review. International Journal of Engineering Science, 11, 905–930 (2010)

    Article  Google Scholar 

  22. Hoyt, J. W. and Fabula, A. F. The Effect of Additives on Fluid Friction, Defense Technical Information Center, Washington D. C. (1964)

    Google Scholar 

  23. Power, H. Micropolar fluid model for the brain fluid dynamics. International Conference on Biofluid Mechanics, New York (1998)

  24. Abbasbandy, S. Homotopy analysis method for the Kawahara equation. Nonlinear Analysis: Real World Applications, 11, 307–312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, C. S. The essence of the homotopy analysis method. Applied Mathematics and Computation, 216, 1299–1303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liao, S. J. Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton (2003)

    Google Scholar 

  27. Liao, S. J. A short review on the homotopy analysis method in fluid mechanics. Journal of Hydrodynamics, 22, 882–884 (2010)

    Article  Google Scholar 

  28. Hayat, T., Naz, R., and Sajid, M. On the homotopy solution for Poiseuille flow of a fourth grade fluid. Communications in Nonlinear Science and Numerical Simulation, 15, 581–589 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hayat, T., Qasim, M., and Abbas, Z. Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. Communications in Nonlinear Science and Numerical Simulation, 15, 2375–2387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dinarvand, S., Doosthoseini, A., Doosthoseini, E., and Rashidi, M. M. Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces. Nonlinear Analysis: Real World Applications, 11, 1159–1169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hayat, T. and Javed, T. On analytic solution for generalized three-dimensional MHD flow over a porous stretching sheet. Physics Letters A, 370, 243–250 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Abbasbandy, S., Yurusoy, M., and Pakdemirli, M. The analysis approach of boundary layer equations of power-law fluids of second grade. Zeitschrift für Naturforschung, 63(a), 564–570 (2008)

    Google Scholar 

  33. Tan, Y. and Abbasbandy, S. Homotopy analysis method for quadratic Ricati differential equation. Communications in Nonlinear Science and Numerical Simulation, 13, 539–546 (2008)

    Article  MATH  Google Scholar 

  34. Hayat, T., Iqbal, Z., Sajid, M., and Vajravelu, K. Heat transfer in pipe flow of a Johnson-Segalman fluid. International Communications in Heat and Mass Transfer, 35, 1297–1301 (2008)

    Article  Google Scholar 

  35. Rees, D. A. S. and Pop, I. Free convection boundary layer flow of a micropolar fluid from a vertical flat plate. IMA Journal of Applied Mathematics, 61, 179–197 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hussain.

Additional information

Project supported by the Higher Education Commission (HEC) of Pakistan (No. 106-1396-Ps6-004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, T., Hussain, M., Hendi, A.A. et al. MHD stagnation point flow towards heated shrinking surface subjected to heat generation/absorption. Appl. Math. Mech.-Engl. Ed. 33, 631–648 (2012). https://doi.org/10.1007/s10483-012-1576-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1576-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation