Skip to main content
Log in

The effect of cold atmospheric pressure plasma on Aspergillus ochraceus and ochratoxin A production

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Aspergillus ochraceus is a soil fungus known to produce ochratoxin A, a harmful secondary metabolite. Prevention and control of fungal pathogens mostly rely on chemical fungicides, which is one of the contributing factors in the emergence of the fungal resistance, hence novel methods for fungal eradication have been extensively researched. The cold atmospheric pressure (CAP) plasma generated in ambient air has been recently applied in microbial decontamination. Here we used the diffuse coplanar surface barrier discharge in inactivation of a toxigenic strain A. ochraceus. The plasma-treated conidia and mycelium exhibited morphological changes such as ruptures and desiccation. Mycelium dehydration and changes in the chemical composition of hyphal surface accompanied plasma treatment. The growth of 26 h old mycelia were significantly restricted after 30 s of plasma treatment. The conidial vitality declined 4 logs after 180 s of plasma exposure leading to almost complete decontamination. After shorter plasma treatment of conidia, the ochratoxin A (OTA) production increased at the early stage of cultivation, but the overall level was significantly reduced compared to untreated samples after longer cultivation. Our results indicated that the fungal growth and the OTA production were significantly changed by plasma treatment and underscored CAP plasma as a promising method in the decontamination of A. ochraceus without a risk to generate strains with increased OTA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arjunan KP, Sharma VK, Ptasinska S (2015) Effects of atmospheric pressure plasmas on isolated and cellular DNA—a review. Int J Mol Sci 16:2971–3016

    Article  CAS  Google Scholar 

  • Bistis GN, Perkins DD, Read ND (2003) Different cell types in Neurospora crassa. Fung Genet Rep 50:17–19

    Article  Google Scholar 

  • Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF (2017) Microbiological interactions with cold plasma. J Appl Microbiol 123:308–324

    Article  CAS  Google Scholar 

  • Černák M, Černáková L, Hudec I, Kováčik D, Zahoranová A (2009) Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur Phys J Appl Phys 47:22806

    Article  Google Scholar 

  • Černák M, Kováčik D, Ráheľ J, Sťahel P, Zahoranová A, Kubincová J, Tóth A, Černáková Ľ (2011) Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys Control Fusion 53:124031

    Article  Google Scholar 

  • Cullen PJ, Lalor J, Scally L, Boehm D, Milosavljević V, Bourke P, Keener K (2017) Translation of plasma technology from the lab to the food industry. Plasma Process Polym. https://doi.org/10.1002/ppap.201700085

    Article  Google Scholar 

  • Dasan BG, Mutlu M, Boyaci IH (2015) Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. Int J Food Microbiol 216:50–59

    Article  Google Scholar 

  • Dasan BG, Boyaci IH, Mutlu M (2016) Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control 70:1–8

    Article  CAS  Google Scholar 

  • Durand N, Fontana A, Meile JC, Suarez-Quiroz ML, Schorr-Galindo S, Montet D (2018) Differentiation and quantification of the ochratoxin A producers Aspergillus ochraceus and Aspergillus westerdijkiae using PCR-DGGE. J Basic Microbiol 59:158–165

    Article  Google Scholar 

  • Durek J, Schlüter O, Roscher A, Durek P, Fröhling A (2018) Inhibition or stimulation of ochratoxin a synthesis on inoculated barley triggered by diffuse coplanar surface barrier discharge plasma. Front Microbiol 9:1–9

    Article  Google Scholar 

  • Gallo A, Ferrara M, Perrone G (2017) Recent advances on the molecular aspects of ochratoxin A biosynthesis. Curr Opin Food Sci 17:49–56

    Article  Google Scholar 

  • Grintzalis K, Vernardis SI, Klapa MI, Georgiou CD (2014) Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl Environ Microbiol 80:55

    Article  Google Scholar 

  • Gupta RC, Lasher MA, Mukherjee IRM, Srivastava A, Lall R (2017) Aflatoxins, ochratoxins, and citrinin. In: Gupta RC (ed) Reproductive and developmental toxicology. Elsevier, Amsterdam, pp 945–962

    Chapter  Google Scholar 

  • Hojnik N, Cvelbar U, Tavčar-Kalcher G, Walsh JL, Križaj I (2017) Mycotoxin decontamination of food: cold atmospheric pressure plasma versus “classic” decontamination. Toxins (Basel) 9:1–19

    Article  Google Scholar 

  • Homola T, Matoušek J, Medvecká V, Zahoranová A, Kormunda M, Kováčik D, Černák M (2012) Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning. Appl Surf Sci 258:7135–7139

    Article  CAS  Google Scholar 

  • Hua H, Xing F, Selvaraj JN, Wang Y, Zhao Y, Zhou L, Liu X, Liu Y (2014) Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin a production. PLoS ONE 9:1–10

    Google Scholar 

  • Ismaiel AA, Papenbrock J (2015) Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture 5:492–537

    Article  CAS  Google Scholar 

  • Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2:391–400

    Article  CAS  Google Scholar 

  • Ma Y, Zhang GJ, Shi XM, Xu GM, Yang Y (2008) Chemical mechanisms of bacterial inactivation using dielectric barrier discharge plasma in atmospheric air. IEEE Trans Plasma Sci 36:1615–1620

    Article  CAS  Google Scholar 

  • Mai-Prochnow A, Clauson M, Hong J, Murphy AB (2016) Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep 6:1–11

    Article  Google Scholar 

  • Mcintyre M, Müller C, Dynesen J, Nielsen J (2001) Metabolic engineering. Adv Biochem Eng Biotechnol 73:103–128

    CAS  PubMed  Google Scholar 

  • Metselaar KI, den Besten HM, Abee T, Moezelaar R, Zwietering MH (2013) Isolation and quantification of highly acid resistant variants of Listeria monocytogenes. Int J Food Microbiol 666:508–514

    Article  Google Scholar 

  • Muranyi P, Wunderlich J, Heise M (2007) Sterilization efficiency of a cascaded dielectric barrier discharge. J Appl Microbiol 103:1535–1544

    Article  CAS  Google Scholar 

  • Ouf SA, Basher AH, Mohamed AAH (2015) Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric 95:3204–3210

    Article  CAS  Google Scholar 

  • Ringot D, Chango A, Schneider Y, Larondelle Y (2006) Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chemico 159:18–46

    CAS  Google Scholar 

  • Sakudo A, Toyokawa Y, Misawa T, Imanishi Y (2017) Degradation and detoxification of aflatoxin B1 using nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control 73:619–626

    Article  CAS  Google Scholar 

  • Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL (2017) Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol 10:1042–1052

    Article  CAS  Google Scholar 

  • Šimončicová J, Kaliňáková B, Kováčik D, Medvecká V, Lakatoš B, Kryštofová S, Hoppanová L, Palušková V, Hudecová D, Ďurina P, Zahoranová A (2018) Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl Microbiol Biotechnol 102:6647–6658

    Article  Google Scholar 

  • Suhem K, Matan N, Nisoa M, Matan N (2013) Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int J Food Microbiol 161:107–111

    Article  Google Scholar 

  • Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, Pan Y, Huang L, Peng D, Wang X, Yuan Z (2018) Ochratoxin A: toxicity, oxidative stress and metabolism. Food Chem Toxicol 112:320–331

    Article  CAS  Google Scholar 

  • Van der Merwe KJ, Steyn PS, Fourie L, Scott DB, Theron JJ (1965) Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 205:1112

    Article  Google Scholar 

  • Varga J, Baranyi N, Chandrasekaran M, Vágvölgyi C (2015) Mycotoxin producers in the Aspergillus genus: an update. Acta Biol Szeged 59:151–167

    Google Scholar 

  • Veroli GY, Di Fornari C, Goldlust I, Mills G, Koh SB, Bramhall JL, Richards FM, Jodrell DI (2015) An automated fitting procedure and software for dose-response curves with multiphasic features. Sci Rep 5:14701

    Article  Google Scholar 

  • Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing F, Zhao Y, Liu Y (2016) Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins (Basel) 8:1–15

    Google Scholar 

  • WHO—World Health Organization & International Agency for Research on Cancer (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. WHO 56

  • Yong IH, Lee H, Park S, Park J, Choe W, Jung S, Jo C (2017) Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat’s physicochemical properties. Meat Sci 123:151–156

    Article  CAS  Google Scholar 

  • Yoshino K, Matsumoto H, Iwasaki T, Kinoshita S, Noda K, Iwamori S (2013) Monitoring of sterilization in an oxygen plasma apparatus, employing a quartz crystal microbalance (QCM) method. Vacuum 93:84–89

    Article  CAS  Google Scholar 

  • Zahoranová A, Henselová M, Hudecová D, Kaliňáková B, Kováčik D, Medvecká V, Černák M (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414

    Article  Google Scholar 

  • Zahoranová A, Hoppanová L, Šimončicová J, Tučeková Z, Medvecká V, Hudecová D, Kaliňáková B, Kováčik D, Černák M (2018) Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem Plasma Process 38:969–988

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Slovak Research and Development Agency under the Contract No. APVV-16-0216.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JD, LH; Methodology: JD, LH, BK; Formal analysis and investigation: JD, PĎ, LH, DK, VM; Writing—original draft preparation: LH; Writing—review and editing: SK; Supervision: BK, AZ. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Lucia Hoppanová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoppanová, L., Dylíková, J., Kováčik, D. et al. The effect of cold atmospheric pressure plasma on Aspergillus ochraceus and ochratoxin A production. Antonie van Leeuwenhoek 113, 1479–1488 (2020). https://doi.org/10.1007/s10482-020-01457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-020-01457-8

Keywords

Navigation