Skip to main content
Log in

Paraburkholderia strydomiana sp. nov. and Paraburkholderia steynii sp. nov.: rhizobial symbionts of the fynbos legume Hypocalyptus sophoroides

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Twelve nodulating Paraburkholderia strains isolated from indigenous South African fynbos legume Hypocalyptus sophoroides were investigated to determine their taxonomic status. Genealogical concordance analysis, based on six loci (16S rRNA, atpD, recA, rpoB, lepA and gltB), revealed that they separate into two consistent and exclusive groups. Average nucleotide identity and DNA–DNA hybridisation comparisons indicated that they were sufficiently divergent from their closest known phylogenetic relatives (Paraburkholderia caledonica and Paraburkholderia terrae, respectively) to be regarded as novel species. This was also supported by the results of fatty acid analysis and metabolic characterisation. For these two isolate groups, we accordingly propose the new species Paraburkholderia strydomiana sp. nov. with WK1.1fT (= LMG 28731T = SARCC1213T) as its type strain and Paraburkholderia steynii sp. nov. with HC1.1baT (= LMG 28730T = SARCC696T) as its type strain. Our data thus showed that H. sophoroides may be considered a promiscuous symbiotic partner due to its ability to associate with multiple species of Paraburkholderia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local allignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aoki A, Ito M, Iwasaki W (2013) From β- to α-Proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ. Mol Biol Evol 30:2494–2508

    Article  CAS  PubMed  Google Scholar 

  • Arahal D (2014) Whole-gnome analyses: average nucleotide identity. Method Microbiol 41:103–122

    Article  CAS  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards et al. (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75 http://dx.doi.org/10/1186/1471-2164-9-75

  • Baek I, Seo B, Lee I, Yi H, Chun J (2015) Burkholderia monticola sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 65:504–509

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J et al (2017) GenBank. Nucleic Acids Res 45:D37–D42. https://doi.org/10.1093/nar/gkx1094

    Article  CAS  PubMed  Google Scholar 

  • Beukes CW, Venter SN, Law IJ, Phalane FL, Steenkamp ET (2013) South African papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation Loci. PLoS ONE 8:e68406. https://doi.org/10.1371/journal.pone.0068406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bournaud C, Moulin L, Cnockaert M, de Faria S, Prin Y, Severac D, Vandamme P (2017) Paraburkholderia piptadeniae sp. nov., and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 67:432–440

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  PubMed  Google Scholar 

  • Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S et al (2018) Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 68:2386–2392

    Article  PubMed  PubMed Central  Google Scholar 

  • Coenye T, Laevens S, Willems A, Ohlen M, Hannant W, Govan JRW, Gillis M, Falsen E, Vandamme P (2001) Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Posada D (2014) jModelTest 2.0 Manual v0.1.1. http://darwin.uvigo.es/software/

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Article  Google Scholar 

  • de Castro Pires R, dos Reis Junior FB, Zilli JE, Fischer D, Hofmann A, James EK et al (2018) Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant Soil 423:411–428

    Article  CAS  Google Scholar 

  • De Meyer SE, Cnockaert M, Ardley JK, Maker G, Yates R, Howieson JG, Vandamme P (2013a) Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 63:3950–3957

    Article  CAS  PubMed  Google Scholar 

  • De Meyer SE, Cnockaert M, Ardley JK, Trengove RD, Garau G, Howieson JG, Vandamme P (2013b) Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. Int J Syst Evol Microbiol 63:3944–3949

    Article  CAS  PubMed  Google Scholar 

  • De Meyer SE, Cnockaert M, Ardley JK, Van Wyk B-E, Vandamme PA, Howieson JG (2014) Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 64:1090–1095

    Article  CAS  PubMed  Google Scholar 

  • Dobritsa AP, Samadpour M (2016) Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846

    Article  CAS  PubMed  Google Scholar 

  • Elliott GN, Chen W-M, Chou J-H, Wang H-C, Sheu S-Y, Perin L et al (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180

    Article  CAS  PubMed  Google Scholar 

  • Estrada-de los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J (2013) Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 67:51–60

    Article  CAS  PubMed  Google Scholar 

  • Estrada-de los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L et al (2018) Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 9:389. https://doi.org/10.3390/genes9080389

    Article  CAS  PubMed Central  Google Scholar 

  • Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:591–592

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Galtier N, Daubin V (2008) Dealing with incongruence in phylogenomic analyses. Philos Trans R Soc B 363:4023–4029

    Article  Google Scholar 

  • Garrity GM, Bell JA, Linburn T (2005) Family I. Burkholderiaceae. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology 2, 2nd edn. Springer, New York, pp 438–475

    Google Scholar 

  • Goris J, Dejonghe W, Falsen E, De Clerck E, Geeraerts B, Willems A, Top EM, Vandamme P, De Vos P (2002) Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25:340–352

    Article  CAS  PubMed  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  • Graham PH, Sadowsky MJ, Keyser HH, Barnet M, Bradley RS, Cooper JE et al (1991) Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen W-M, Elliott GN, Bontemps C et al (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp 41:95–98

    CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P, Glaeser SP (2012) Prokaryotic taxonomy in the sequencing era–the polyphasic approach revisited. Environ Microbiol 14:291–317

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Toh H (2008) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform 9:212. https://doi.org/10.1186/1471-2105-9-212

    Article  CAS  Google Scholar 

  • Klock MM, Barrett LG, Thrall PH, Harms KE (2015) Host promiscuity in symbiont associations can influence exotic legume establishment and colonization of novel ranges. Divers Distrib 21:1193–1203

    Article  Google Scholar 

  • Legume Phylogeny Working Group (LPWG) (2013) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62:217–248

    Article  Google Scholar 

  • Legume Phylogeny Working Group (LPWG) (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77. https://doi.org/10.12705/661.3

    Article  Google Scholar 

  • Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent J, James EK, Muasya AM (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol. http://dx.doi.org/10.1093/femsec/fiu024

  • Lemaire B, Chimphango SBM, Stirton C, Rafudeen S, Honnay O, Smets E et al (2016) Biogeographical patterns of legume-nodulating Burkholderia spp.: from African Fynbos to continental scales. Appl Environ Microbiol 82:5099–5115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. Royal Botanic Gardens Kew, London

    Google Scholar 

  • Liu WY, Ridgway HJ, James TK, James EK, Chen W-M, Sprent JI et al (2014) Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae) in New Zealand soils. Microb Ecol 68:542–555

    Article  CAS  PubMed  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • Mavengere NR, Ellis AG, Le Roux JJ (2014) Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb. Int J Syst Evol Microbiol 64:1906–1912

    Article  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60 http://www.biomedcentral.com/1471-2105/14/60

  • Nazir R, Warmink JA, Voordes DC, van de Bovenkamp HH, van Elsas JD (2013) Inhibition of mushroom formation and induction of glycerol release–ecological strategies of Burkholderia terrae BS001 to create a hospitable niche at the fungus Lyophyllum sp. strain Karsten. Microb Ecol 65:245–254

    Article  PubMed  Google Scholar 

  • Nazir R, Tazetdinova DI, van Elsas JD (2014) Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents. Font Microbiol. https://doi.org/10.3389/fmicb.2014.00598

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nixon KC, Wheeler QD (1990) An amplification of the phylogenetic species concept. Cladistics 6:211–223

    Article  Google Scholar 

  • Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A et al (2013) Assembling genomes and mini-metagenomes from highly chimeric reads. Res Comput Mol Biol 7821:158–170

    Article  Google Scholar 

  • Oren A, Garrity GM (2015a) List of new names and new combinations previously effectively, but not validly, published. Validation List no. 164. Int J Syst Evol Microbiol 65:2017–2025

    Article  Google Scholar 

  • Oren A, Garrity GM (2015b) List of new names and new combinations previously effectively, but not validly, published. Validation List no. 165. Int J Syst Evol Microbiol 65:2777–2783

    Article  Google Scholar 

  • Oren A, Garrity GM (2017) List of new names and new combinations previously effectively, but not validly, published. Validation List no. 173. Int J Syst Evol Microbiol 67:1–3

    Article  PubMed  Google Scholar 

  • Parte AC (2013) LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M, Hertweck C (2007) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int J Syst Evol Microbiol 57:2583–2590

    Article  CAS  PubMed  Google Scholar 

  • Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS, Vandamme P (2016) Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00877

  • Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkolderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet. https://doi.org/10.3389/fgene.2014.00429

  • Schutte AL, van Wyk B-E (1998) The tribal position of Hypocalyptus Thunberg (Fabaceae). Novon 8:178–182

    Article  Google Scholar 

  • Shams M, Vial L, Chapulliot D, Nesme X, Lavire C (2013) Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Syst Appl Microbiol 36:351–358

    Article  CAS  PubMed  Google Scholar 

  • Shapiro BJ (2018) What microbial population genomics has taught us about speciation. In: Polz M, Rajora O (eds) Population genomics: microorganisms. Population genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_10

    Chapter  Google Scholar 

  • Sheu S-Y, Chou J-H, Bontemps C, Elliott GN, Gross E, dos Reis Junior FB et al (2013) Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 63:435–441

    Article  CAS  PubMed  Google Scholar 

  • Sheu S-Y, Chen M-H, Liu WYY, Andrews M, James EK, Ardley JK (2015) Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. Int J Syst Evol Microbiol 65:4716–4723

    Article  CAS  PubMed  Google Scholar 

  • Spilker T, Baldwin A, Bumford A, Dowson CG, Mahenthiralingam E, LiPuma JJ (2009) Expanded multilocus sequence typing for Burkholderia species. J Clin Microbiol 47:2607–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens Kew, London

    Google Scholar 

  • Steenkamp ET, van Zyl E, Beukes CW, Avontuur JR, Chan WY, Palmer M et al (2015) Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 38:545–554

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AV, Kotina EL, Tilney PM, Van Wyk B-E (2013) Wood and bark anatomy of Hypocalyptus support its isolated taxonomic position in Leguminosae. S Afr J Bot 89:234–239

    Article  Google Scholar 

  • Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266

    Article  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetic analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. American Mathematical Society, Rhode Island, pp 57–86

    Google Scholar 

  • Thrall PH, Burdon JJ, Woods MJ (2000) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian legumes: interactions within and between genera. J Appl Ecol 37:52–65

    Article  Google Scholar 

  • Thrall PH, Millsom DA, Jeavons AC, Waayers M, Harvey GR, Bagnall DJ, Brockwell J (2005) Seed inoculation with effective root-nodule bacteria enhances revegetation success. J Appl Ecol 42:740–751

    Article  Google Scholar 

  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Article  PubMed  Google Scholar 

  • Van Wyk B-E (2005) Tribe Hypocalypteae. In: Lewis L, Schrire B, Mackinder B, Lock M (eds) Legumes of the world, 1st edn. Royal Botanic Gardens Kew, London, pp 336–337

    Google Scholar 

  • Vandamme P, Goris J, Chen W-M, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    Article  PubMed  Google Scholar 

  • Venter SN, Palmer M, Beukes CW, Chan W-Y, Shin G, van Zyl E, Seale T, Coutinho TA, Steenkamp ET (2017) Practically delineating bacterial species with genealogical concordance. Antonie Leeuwenhoek 110:1311–1325

    Article  PubMed  Google Scholar 

  • Verstraete B, Peeters C, van Wyk B, Smets E, Dessein S, Vandamme P (2014) Intraspecific variation in Burkholderia caledonica: europe vs. Africa and soil vs. endophytic isolates. Syst Appl Microbiol 37:194–199

    Article  PubMed  Google Scholar 

  • Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martínez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Turner SJ, Silvester WB, Park D-C, Young JM (2004) Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol 70:5980–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275

    Article  CAS  PubMed  Google Scholar 

  • Yang H-C, Im W-T, Kim KK, An D-S, Lee S-T (2006) Burkholderia terrae sp. nov., isolated from a forest soil. Int J Syst Evol Microbiol 56:453–457

    Article  CAS  PubMed  Google Scholar 

  • Yates MJ, Verboom GA, Rebelo AG, Cramer MD (2010) Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Funct Ecol 24:485–492

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Research Fund (NRF). University of Pretoria DNA sequencing facility for Sanger sequencing, as well as the library building for Ion Torrent Proton Sequencing. We wish to thank Prof. B. Schink for the helpful advice on the etymology of the bacterial names.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma T. Steenkamp.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA sequences of type strains WK1.1fT and HC1.1baT are HF674688 and HF674712, the atpD gene sequences are LN555593 and LN555601, the rpoB accession numbers are LN555614 and LN555624 and the recA accession numbers are HF544384 and HF544408. Lastly the accession numbers for the lepA gene sequences of WK1.1fT and HC1.1baT are LT708273 and LT708274, while the gltB accessions are LT708294 and LT708295. The NCBI genome accession numbers for the type strains are MWMK00000000 and MWML00000000.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beukes, C.W., Steenkamp, E.T., van Zyl, E. et al. Paraburkholderia strydomiana sp. nov. and Paraburkholderia steynii sp. nov.: rhizobial symbionts of the fynbos legume Hypocalyptus sophoroides. Antonie van Leeuwenhoek 112, 1369–1385 (2019). https://doi.org/10.1007/s10482-019-01269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01269-5

Keywords

Navigation