Skip to main content

Advertisement

Log in

Common Features of Environmental and Potentially Beneficial Plant-Associated Burkholderia

  • Minireview
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The genus Burkholderia comprises more than 60 species isolated from a wide range of niches. Although they have been shown to be diverse and ubiquitously distributed, most studies have thus far focused on the pathogenic species due to their clinical importance. However, the increasing number of recently described Burkholderia species associated with plants or with the environment has highlighted the division of the genus into two main clusters, as suggested by phylogenetical analyses. The first cluster includes human, animal, and plant pathogens, such as Burkholderia glumae, Burkholderia pseudomallei, and Burkholderia mallei, as well as the 17 defined species of the Burkholderia cepacia complex, while the other, more recently established cluster comprises more than 30 non-pathogenic species, which in most cases have been found to be associated with plants, and thus might be considered to be potentially beneficial. Several species from the latter group share characteristics that are of use when associating with plants, such as a quorum sensing system, the presence of nitrogen fixation and/or nodulation genes, and the ability to degrade aromatic compounds. This review examines the commonalities in this growing subgroup of Burkholderia species and discusses their prospective biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Achouak W, Christen R, Barakat M, Martel MH, Heulin T (1999) Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int J Syst Bacteriol 49:787–794

    Article  PubMed  CAS  Google Scholar 

  2. Aizawa T, Ve NB, Nakajima M, Sunairi M (2010) Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 60:1152–1157

    Article  PubMed  CAS  Google Scholar 

  3. Aizawa T, Ve NB, Vijarnsorn P, Nakajima M, Sunairi M (2010) Burkholderia acidipaludis sp. nov., aluminum-tolerant bacteria isolated from the Chinese water chestnut, Eleocharis dulcis, that grows in highly acidic swamps in Southeast Asia. Int J Syst Evol Microbiol 60:2036–2041

    Article  PubMed  CAS  Google Scholar 

  4. Aizawa T, Vijarnsorn P, Nakajima M, Sunairi M (2011) Burkholderia bannensis sp. nov., an acidic pH-neutralizing bacterium isolated from torpedo grass (Panicum repens) that grows in highly acidic swamps in Thailand. Int J Syst Evol Microbiol 61:1645–1650

    Article  PubMed  CAS  Google Scholar 

  5. Anandham R, Indira Gandhi P, Kwon SW, Sa TM, Kim YK, Jee HJ (2009) Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov. Arch Microbiol 191:885–894

    Article  PubMed  CAS  Google Scholar 

  6. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    Article  PubMed  CAS  Google Scholar 

  7. Azevedo JL, Maccheroni W Jr, Pereira JO, Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Google Scholar 

  8. Bacon C, Hinton D (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam S (ed) Plant-associated bacteria, vol. 1. Springer, Dordrecht, pp 155–194

    Chapter  Google Scholar 

  9. Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  10. Baldani VL, Oliveira E, Balota E, Baldani JI, Kirchhof G, Döbereiner J (1997) Burkholderia brasilensis sp. nov. uma nova espécie de bactéria diazotrófica endofítica. An Acad Bras Cienc 69:1

    Google Scholar 

  11. Ballard RW, Palleroni NJ, Doudoroff M, Stanier RY, Mandel M (1970) Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. J Gen Microbiol 60:199–214

    PubMed  CAS  Google Scholar 

  12. Barka EA, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    Article  PubMed  CAS  Google Scholar 

  13. Barka EA, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biological Control 24:135–142

    Article  Google Scholar 

  14. Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206

    Article  PubMed  CAS  Google Scholar 

  15. Barrett CF, Parker MA (2005) Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28:57–65

    Article  PubMed  CAS  Google Scholar 

  16. Barriuso J, Pereyra MT, Lucas Garcia JA, Megias M, Gutierrez Manero FJ, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus–Pinus sp. Microb Ecol 50:82–89

    Article  PubMed  CAS  Google Scholar 

  17. Barriuso J, Ramos Solano B, Fray RG, Camara M, Hartmann A, Gutierrez Manero FJ (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    Article  PubMed  CAS  Google Scholar 

  18. Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  19. Bontemps C, Elliott GN, Simon MF, Dos Reis Junior FB, Gross E, Lawton RC, Neto NE, de Fatima LM, De Faria SM, Sprent JI, James EK, Young JP (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52

    Article  PubMed  CAS  Google Scholar 

  20. Bopp LH (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol Biotechnol 1:23–29

    CAS  Google Scholar 

  21. Bramer CO, Vandamme P, da Silva LF, Gomez JG, Steinbuchel A (2001) Polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51:1709–1713

    Article  PubMed  CAS  Google Scholar 

  22. Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117

    Google Scholar 

  23. Burkholder WH (1942) Three bacterial plant pathogens:Phytomonas caryophylli, sp.n., Phytomonas alliicola sp.n., and Phytomonas manihotis (Artaud-Berthet et Bondar) Viegas. Phytopathology 32:141–149

    Google Scholar 

  24. Caballero-Mellado J, Martinez-Aguilar L, Paredes-Valdez G, Santos PE (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172

    Article  PubMed  CAS  Google Scholar 

  25. Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martinez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    Article  PubMed  CAS  Google Scholar 

  26. Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, Reyes VL, Hauser L, Cordova M, Gomez L, Gonzalez M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287

    Article  PubMed  Google Scholar 

  27. Chen W-M, de Faria SM, Chou J-H, James EK, Elliott GN, Sprent JI, Bontemps C, Young JPW, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179

    Article  PubMed  CAS  Google Scholar 

  28. Chen W-M, de Faria SM, James EK, Elliott GN, Lin K-Y, Chou J-H, Sheu S-Y, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059

    Article  PubMed  CAS  Google Scholar 

  29. Chen W-M, James EK, Coenye T, Chou J-H, Barrios E, de Faria SM, Elliott GN, Sheu S-Y, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851

    Article  PubMed  CAS  Google Scholar 

  30. Chen WM, de Faria SM, Straliotto R, Pitard RM, Simoes-Araujo JL, Chou JH, Chou YJ, Barrios E, Prescott AR, Elliott GN, Sprent JI, Young JP, James EK (2005) Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471

    Article  PubMed  CAS  Google Scholar 

  31. Chen WM, James EK, Chou JH, Sheu SY, Yang SZ, Sprent JI (2005) Beta-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol 168:661–675

    Article  PubMed  CAS  Google Scholar 

  32. Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003) Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 16:1051–1061

    Article  PubMed  CAS  Google Scholar 

  33. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  PubMed  CAS  Google Scholar 

  34. Chen WM, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  PubMed  CAS  Google Scholar 

  35. Coenye T (2010) Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing. Future Microbiol 5:1087–1099

    Article  PubMed  CAS  Google Scholar 

  36. Coenye T, Henry D, Speert DP, Vandamme P (2004) Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Syst Appl Microbiol 27:623–627

    Article  PubMed  CAS  Google Scholar 

  37. Coenye T, Laevens S, Willems A, Ohlen M, Hannant W, Govan JR, Gillis M, Falsen E, Vandamme P (2001) Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107

    Article  PubMed  CAS  Google Scholar 

  38. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  39. Compant S, Nowak J, Coenye T, Clement C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626

    Article  PubMed  CAS  Google Scholar 

  40. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed  CAS  Google Scholar 

  41. Cunha MV, Sousa SA, Leitao JH, Moreira LM, Videira PA, Sa-Correia I (2004) Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J Clin Microbiol 42:3052–3058

    Article  PubMed  CAS  Google Scholar 

  42. Dos Reis FB Jr, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE, de Loureiro MF, de Queiroz LP, Scotti MR, Chen WM, Noren A, Rubio MC, de Faria SM, Bontemps C, Goi SR, Young JP, Sprent JI, James EK (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946

    Article  PubMed  CAS  Google Scholar 

  43. Duerkop BA, Ulrich RL, Greenberg EP (2007) Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1-BmaI1 quorum sensing. J Bacteriol 189:5034–5040

    Article  PubMed  CAS  Google Scholar 

  44. Duerkop BA, Varga J, Chandler JR, Peterson SB, Herman JP, Churchill ME, Parsek MR, Nierman WC, Greenberg EP (2009) Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J Bacteriol 191:3909–3918

    Article  PubMed  CAS  Google Scholar 

  45. Eberl L (2006) Quorum sensing in the genus Burkholderia. Int J Med Microbiol 296:103–110

    Article  PubMed  CAS  Google Scholar 

  46. Egland KA, Greenberg EP (1999) Quorum sensing in Vibrio fischeri: elements of the luxl promoter. Mol Microbiol 31:1197–1204

    Article  PubMed  CAS  Google Scholar 

  47. Elliott GN, Chen WM, Bontemps C, Chou JH, Young JP, Sprent JI, James EK (2007) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot (Lond) 100:1403–1411

    Article  CAS  Google Scholar 

  48. Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex-planta. New Phytol 173:168–180

    Article  PubMed  CAS  Google Scholar 

  49. Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martinez-Romero E, Velazquez E, Young JP, Sprent JI, James EK (2009) Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11:762–778

    Article  PubMed  Google Scholar 

  50. Estrada-de Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    Article  PubMed  CAS  Google Scholar 

  51. Ferreira AS, Leitao JH, Silva IN, Pinheiro PF, Sousa SA, Ramos CG, Moreira LM (2010) Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl Environ Microbiol 76:441–450

    Article  PubMed  CAS  Google Scholar 

  52. Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  PubMed  CAS  Google Scholar 

  53. Garau G, Yates R, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholdeira have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soil. Soil Biol Biochem 41:125–134

    Article  CAS  Google Scholar 

  54. Gilad J (2007) Burkholderia mallei and Burkholderia pseudomallei: the causative micro-organisms of glanders and melioidosis. Recent Pat Antiinfect Drug Discov 2:233–241

    Article  PubMed  CAS  Google Scholar 

  55. Gillis M, Van Van T, Bardin R, Goor M, Herbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289

    Article  CAS  Google Scholar 

  56. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  57. Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG (2003) Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41:2068–2079

    Article  PubMed  CAS  Google Scholar 

  58. Goris J, De Vos P, Caballero-Mellado J, Park J, Falsen E, Quensen JF 3rd, Tiedje JM, Vandamme P (2004) Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400 and relatives as Burkholderia xenovorans sp. nov. Int J Syst Evol Microbiol 54:1677–1681

    Article  PubMed  CAS  Google Scholar 

  59. Goris J, Dejonghe W, Falsen E, De Clerck E, Geeraerts B, Willems A, Top EM, Vandamme P, De Vos P (2002) Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25:340–352

    Article  PubMed  CAS  Google Scholar 

  60. Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  61. Graham PH (2008) Ecology of the root-nodule bacteria of legumes. In: Dilworth M, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing legume symbioses. Springer, Dordrecht

    Google Scholar 

  62. Gyaneshwar P, Hirsch AM, Moulin I, Chen WM, Elliott GN, Bontemps C, Estrada de Los Santos P, Gross E, Dos Reis Junior FB, Sprent JI, Young JP, James EK (2011) Legume-nodulating betaproteobacteria: diversity, host range and future prospects. Mol Plant Microbe Interact (in press)

  63. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  PubMed  CAS  Google Scholar 

  64. Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium tolerant rice varieties. New Phytol 154:131–146

    Article  CAS  Google Scholar 

  65. Hallack LF, Passos DS, Mattos KA, Agrellos OA, Jones C, Mendonca-Previato L, Previato JO, Todeschini AR (2009) Structural elucidation of the repeat unit in highly branched acidic exopolysaccharides produced by nitrogen fixing Burkholderia. Glycobiology 20:338–347

    Article  PubMed  CAS  Google Scholar 

  66. Hallmann J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  67. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528

    PubMed  CAS  Google Scholar 

  68. Hurek T, Reinhold-Hurek B, Turner GL, Bergersen FJ (1994) Augmented rates of respiration and efficient nitrogen fixation at nanomolar concentrations of dissolved O2 in hyperinduced Azoarcus sp. strain BH72. J Bacteriol 176:4726–4733

    PubMed  CAS  Google Scholar 

  69. Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, Levison H (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210

    Article  PubMed  CAS  Google Scholar 

  70. Izumi H, Cairney JW, Killham K, Moore E, Alexander I, Anderson I (2010) Bacteria associated with ectomycorrhizas of slash pine (Pinus elliotti) in south-eastern Queensland, Australia. FEMS Microbiol Lett 282:196–204

    Article  CAS  Google Scholar 

  71. James EK (2000) Nitrogen fixation in endophytici and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  72. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    Article  PubMed  CAS  Google Scholar 

  73. Jonsson V (1970) Proposal of a new species Pseudomonas kingii. Int J Syst Bacteriol 20:255–257

    Article  Google Scholar 

  74. Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135

    Article  PubMed  CAS  Google Scholar 

  75. Kilbane JJ, Chatterjee DK, Karns JS, Kellogg ST, Chakrabarty AM (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol 44:72–78

    PubMed  CAS  Google Scholar 

  76. Kim H-B, Park M-J, Yang H-C, An D-S, Jin H-Z, Yang D-C (2006) Burkholderia ginsengisoli sp. nov., a beta-glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 56:2529–2533

    Article  PubMed  CAS  Google Scholar 

  77. Kiratisin P, Sanmee S (2008) Roles and interactions of Burkholderia pseudomallei BpsIR quorum-sensing system determinants. J Bacteriol 190:7291–7297

    Article  PubMed  CAS  Google Scholar 

  78. Leigh J, Coplin D (1992) Exopolysaccharides in plant–bacterial interactions. Annu Rev Microbiol 46:307–346

    Article  PubMed  CAS  Google Scholar 

  79. Leitao JH, Sousa SA, Ferreira AS, Ramos CG, Silva IN, Moreira LM (2010) Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 87:31–40

    Article  PubMed  CAS  Google Scholar 

  80. Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21:903–913

    Article  PubMed  CAS  Google Scholar 

  81. Lim JH, Baek SH, Lee ST (2008) Burkholderia sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 58:565–569

    Article  PubMed  CAS  Google Scholar 

  82. Liu XY, Wu W, Wang ET, Zhang B, Macdermott J, Chen WX (2011) Phylogenetic relationships and diversity of beta-rhizobia associated with Mimosa spp. grown in Sishuangbanna, China. Int J Syst Evol Microbiol 61:334–342

    Article  PubMed  CAS  Google Scholar 

  83. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  84. Luvizzotto D, Marcon J, Andreote FD, Dini-Andreote F, Neves AC, Araujo WL, Pizzirani-Kleiner AA (2010) Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World J Microbiol Biotechnol 25:175–180

    Google Scholar 

  85. Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. JAppl Microbiol 104:1539–1551

    Article  CAS  Google Scholar 

  86. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156

    Article  PubMed  CAS  Google Scholar 

  87. Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA (2005) Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 73:4982–4992

    Article  PubMed  CAS  Google Scholar 

  88. Malott RJ, Sokol PA (2007) Expression of the bviIR and cepIR quorum-sensing systems of Burkholderia vietnamiensis. J Bacteriol 189:3006–3016

    Article  PubMed  CAS  Google Scholar 

  89. Marin VA, Teixeira KR, Baldani JI (2003) Characterization of amplified polymerase chain reaction glnB and nifH gene fragments of nitrogen-fixing Burkholderia species. Lett Appl Microbiol 36:77–82

    Article  PubMed  CAS  Google Scholar 

  90. Martinez-Aguilar L, Diaz R, Pena-Cabriales JJ, Estrada-de Los Santos P, Dunn MF, Caballero-Mellado J (2008) Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl Environ Microbiol 74:4574–4579

    Article  PubMed  CAS  Google Scholar 

  91. Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  PubMed  CAS  Google Scholar 

  92. Mattos KA, Jones C, Heise N, Previato JO, Mendonca-Previato L (2001) Structure of an acidic exopolysaccharide produced by the diazotrophic endophytic bacterium Burkholderia brasiliensis. Eur J Biochem 268:3174–3179

    Article  PubMed  CAS  Google Scholar 

  93. Mattos KA, Padua VL, Romeiro A, Hallack LF, Neves BC, Ulisses TM, Barros CF, Todeschini AR, Previato JO, Mendonca-Previato L (2008) Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth. An Acad Bras Cienc 80:477–493

    Article  PubMed  CAS  Google Scholar 

  94. Mattos KA, Todeschini AR, Heise N, Jones C, Previato JO, Mendonca-Previato L (2005) Nitrogen-fixing bacterium Burkholderia brasiliensis produces a novel yersiniose A-containing O-polysaccharide. Glycobiology 15:313–321

    Article  PubMed  CAS  Google Scholar 

  95. Menard A, Monnez C, de Los E, Santos P, Segonds C, Caballero-Mellado J, Lipuma JJ, Chabanon G, Cournoyer B (2007) Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations. Environ Microbiol 9:1176–1185

    Article  PubMed  CAS  Google Scholar 

  96. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    Article  PubMed  CAS  Google Scholar 

  97. Morris MB, Roberts JB (1959) A Group of Pseudomonads able to synthesize poly-[beta]-hydroxybutyric acid. Nature 183:1538–1539

    Article  PubMed  CAS  Google Scholar 

  98. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  99. Mukhopadhyay K, Garrison NK, Hinton DM, Bacon CW, Khush GS, Peck HD, Datta N (1996) Identification and characterization of bacterial endophytes of rice. Mycopathologia 134:151–159

    Article  PubMed  CAS  Google Scholar 

  100. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    Article  PubMed  CAS  Google Scholar 

  101. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  PubMed  CAS  Google Scholar 

  102. Nowak J, Asiedu SK, Lazarovits G (1995) Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plants co-cultured with a plant growth promoting rhizobacterium. In: Chagvardieff CP (ed) Ecophysiology and photosynthetic in vitro cultures, vol. 173-180. CEA, Aix-en-Provence

    Google Scholar 

  103. Nowak J, Shulaev V (2003) Priming for transplant stress resistance in in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124

    Google Scholar 

  104. Omarjee J, Balandreau J, Spaull VW, Cadet P (2008) Relationships between Burkholderia populations and platn parasitic nematodes in sugarcane. Appl Soil Ecol 39:1

    Article  Google Scholar 

  105. Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  PubMed  CAS  Google Scholar 

  106. Otsuka Y, Muramatsu Y, Nakagawa Y, Matsuda M, Nakamura M, Murata H (2011) Burkholderia oxyphila sp. nov., a bacterium isolated from acidic forest soil that catabolizes (+)-catechin and its putative aromatic derivatives. Int J Syst Evol Microbiol 61:249–254

    Article  PubMed  CAS  Google Scholar 

  107. Palleroni NJ (2005) The genus Burkholderia. In: Brenner DJ, Krieg NR, Garrity GM, Staley JT (eds) Bergey’s manual of systematic bacteriology: the Proteobacteria; the Alpha-, Beta-, Delta-, and Epsilonproteobacteria, vol 2. Springer, East Lansing, pp 575–600

    Chapter  Google Scholar 

  108. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    Article  CAS  Google Scholar 

  109. Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  PubMed  CAS  Google Scholar 

  110. Payne GW, Ramette A, Rose HL, Weightman AJ, Jones TH, Tiedje JM, Mahenthiralingam E (2006) Application of a recA gene-based identification approach to the maize rhizosphere reveals novel diversity in Burkholderia species. FEMS Microbiol Lett 259:126–132

    Article  PubMed  CAS  Google Scholar 

  111. Payne GW, Vandamme P, Morgan SH, Lipuma JJ, Coenye T, Weightman AJ, Jones TH, Mahenthiralingam E (2005) Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 71:3917–3927

    Article  PubMed  CAS  Google Scholar 

  112. Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318

    Article  PubMed  CAS  Google Scholar 

  113. Perin L, Martinez-Aguilar L, Castro-Gonzalez R, Estrada-de Los Santos P, Cabellos-Avelar T, Guedes HV, Reis VM, Caballero-Mellado J (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110

    Article  PubMed  CAS  Google Scholar 

  114. Perin L, Martinez-Aguilar L, Paredes-Valdez G, Baldani JI, Estrada-de Los Santos P, Reis VM, Caballero-Mellado J (2006) Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 56:1931–1937

    Article  PubMed  CAS  Google Scholar 

  115. Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:354–361

    Article  CAS  Google Scholar 

  116. Pol-Fachin L, Serrato RV, Verli H (2010) Solution conformation and dynamics of exopolysaccharides from Burkholderia species. Carbohydr Res 345:1922–1931

    Article  PubMed  CAS  Google Scholar 

  117. Rasolomampianina R, Bailly R, Fetiarison R, Rabevohitra R, Bena G, Ramaroson M, Raherimandimby R, Moulin I, De Lajudie P, Dreyfus B, Avarre JC (2005) Nitrogen-fixing nodules from rose wood legume trees Dalbergia spp. endemic to Madagascar host seven different genera belonging to B-Proteobacteria. Mol Ecol 14:4135–4146

    Article  PubMed  CAS  Google Scholar 

  118. Redfearn MS, Palleroni NJ, Stanier RY (1966) A comparative study of Pseudomonas pseudomallei and Bacillus mallei. J Gen Microbiol 43:293–313

    PubMed  CAS  Google Scholar 

  119. Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VL, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162

    Article  PubMed  CAS  Google Scholar 

  120. Ribeiro GX, Fernandes ME, De Aquino AM, Zilli JE, Rumjanek NG (2010) The structural and functional biodiversity of soil: an interdisciplinary vision of conservation agriculture in Brazil. In: Dion P (ed) Soil biology and agriculture in the tropics, vol. 1. Springer, Quebec, pp 65–80

    Google Scholar 

  121. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  122. Ruff J, Denger K, Cook AM (2003) Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369:275–285

    Article  PubMed  CAS  Google Scholar 

  123. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  124. Salles JF, van Elsas JD, van Veen JA (2006) Effect of agricultural management regime on Burkholderia community structure in soil. Microb Ecol 52:267–279

    Article  PubMed  CAS  Google Scholar 

  125. Seeger M, Gonzalez M, Camara B, Munoz L, Ponce E, Mejias L, Mascayano C, Vasquez Y, Sepulveda-Boza S (2003) Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Appl Environ Microbiol 69:5045–5050

    Article  PubMed  CAS  Google Scholar 

  126. Serrato RV, Sassaki GL, Cruz LM, Pedrosa FO, Gorin PAJ, Iacomini M (2006) Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica. Can J Microbiol 52:489–493

    Article  PubMed  CAS  Google Scholar 

  127. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  PubMed  CAS  Google Scholar 

  128. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  PubMed  CAS  Google Scholar 

  129. Silipo A, Ierano T, Lanzetta R, Molinaro A, Parrilli M (2008) The structure of the O-chain polysaccharide from the Gram-negative endophytic bacterium Burkholderia phytofirmans strain PsJN. Eur J Organic Chem 2008:2303–2308

    Article  CAS  Google Scholar 

  130. Smith DJ, Martin VJ, Mohn WW (2004) A cytochrome P450 involved in the metabolism of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J Bacteriol 186:3631–3639

    Article  PubMed  CAS  Google Scholar 

  131. Smith DJ, Park J, Tiedje JM, Mohn WW (2007) A large gene cluster in Burkholderia xenovorans encoding abietane diterpenoid catabolism. J Bacteriol 189:6195–6204

    Article  PubMed  CAS  Google Scholar 

  132. Smith DJ, Patrauchan MA, Florizone C, Eltis LD, Mohn WW (2008) Distinct roles for two CYP226 family cytochromes P450 in abietane diterpenoid catabolism by Burkholderia xenovorans LB400. J Bacteriol 190:1575–1583

    Article  PubMed  CAS  Google Scholar 

  133. Spilker T, Baldwin A, Bumford A, Dowson CG, Mahenthiralingam E, Lipuma JJ (2009) Expanded multilocus sequence typing for Burkholderia species. J Clin Microbiol 47:2607–2610

    Article  PubMed  CAS  Google Scholar 

  134. Sprent JI (2009) Legume nodulation: A global perspective. Wiley, Chichester

    Google Scholar 

  135. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271

    PubMed  CAS  Google Scholar 

  136. Suarez Moreno ZR, Devescovi G, Myers M, Hallack L, Mendonca-Previato L, Caballero-Mellado J, Venturi V (2010) Commonalities and differences in N-acyl homoserine lactone quorum sensing regulation in the species cluster of beneficial plant associated Burkholderia. Appl Environ Microbiol 76:4302–4317

    Article  PubMed  CAS  Google Scholar 

  137. Suarez-Moreno ZR, Caballero-Mellado J, Venturi V (2008) The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia spp. shares a conserved quorum-sensing system, which is tightly regulated by the RsaL repressor. Microbiology 154:2048–2059

    Article  PubMed  CAS  Google Scholar 

  138. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  PubMed  CAS  Google Scholar 

  139. Talbi C, Delgado MJ, Girard L, Ramirez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76:4587–4591

    Article  PubMed  CAS  Google Scholar 

  140. Tayeb LA, Lefevre M, Passet V, Diancourt L, Brisse S, Grimont PA (2008) Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences. Res Microbiol 159:169–177

    Article  PubMed  CAS  Google Scholar 

  141. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  142. Van Tran V, Berger O, Ngo K, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils. Plant Soil 218:273–284

    Article  Google Scholar 

  143. Trognitz F, Scherwinski K, Fekete A, Schmidt S, Eberl L, Rodewald J, Schmid M, Compant S, Hartmann A, Schmitt-Kopplin P, Trognitz B, Sessitsch A (2009) Interaction between potato and the endophyte Burkholderia phytofirmans. Tag Vereinig Pflanzenzücht Saatgutkaufl Österr 59:63–66

    Google Scholar 

  144. Ulrich RL, Deshazer D, Brueggemann EE, Hines HB, Oyston PC, Jeddeloh JA (2004) Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J Med Microbiol 53:1053–1064

    Article  PubMed  CAS  Google Scholar 

  145. Ussery DW, Kiil K, Lagesen K, Sicheritz-Ponten T, Bohlin J, Wassenaar TM (2009) The genus Burkholderia: analysis of 56 genomic sequences. Genome Dyn 6:140–157

    Article  PubMed  CAS  Google Scholar 

  146. Valverde A, Delvasto P, Peix A, Velazquez E, Santa-Regina I, Ballester A, Rodriguez-Barrueco C, Garcia-Balboa C, Igual JM (2006) Burkholderia ferrariae sp. nov., isolated from an iron ore in Brazil. Int J Syst Evol Microbiol 56:2421–2425

    Article  PubMed  CAS  Google Scholar 

  147. Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    Article  PubMed  Google Scholar 

  148. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan JR (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200

    Article  PubMed  CAS  Google Scholar 

  149. Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S, De Brandt E, Eberl L, Falsen E, Berg G (2007) Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int J Syst Evol Microbiol 57:2228–2235

    Article  PubMed  CAS  Google Scholar 

  150. Vanhaverbeke C, Heyraud A, Mazeau K (2003) Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: impact on the interaction with soils. Biopolymers 69:480–497

    Article  PubMed  CAS  Google Scholar 

  151. Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species. Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111

    Article  PubMed  CAS  Google Scholar 

  152. Vanlaere E, Sergeant K, Dawyndt P, Kallow W, Erhard M, Sutton H, Dare D, Devreese B, Samyn B, Vandamme P (2008) Matrix-assisted laser desorption ionisation-time-of of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J Microbiol Methods 75:279–286

    Article  PubMed  CAS  Google Scholar 

  153. Vanlaere E, van der Meer JR, Falsen E, Salles JF, de Brandt E, Vandamme P (2008) Burkholderia sartisoli sp. nov., isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 58:420–423

    Article  PubMed  CAS  Google Scholar 

  154. Venturi V, Friscina A, Bertani I, Devescovi G, Aguilar C (2004) Quorum sensing in the Burkholderia cepacia complex. Res Microbiol 155:238–244

    Article  PubMed  CAS  Google Scholar 

  155. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Bacteriol 48:549–563

    PubMed  CAS  Google Scholar 

  156. Warmink JA, Nazir R, Corten B, van Elsas JD (2011) Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem 43:760–765

    Article  CAS  Google Scholar 

  157. Warmink JA, van Elsas JD (2009) Migratory response of soil bacteria to Lyophyllum sp. strain Karsten in soil microcosms. Appl Environ Microbiol 75:2820–2830

    Article  PubMed  CAS  Google Scholar 

  158. Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2:887–900

    Article  PubMed  CAS  Google Scholar 

  159. Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384

    Article  PubMed  CAS  Google Scholar 

  160. Wong-Villarreal A, Caballero-Mellado J (2010) Rapid identification of nitrogen-fixing and legume-nodulating Burkholderia species based on PCR 16S rRNA species-specific oligonucleotides. Syst Appl Microbiol 33:35–43

    Article  PubMed  CAS  Google Scholar 

  161. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275

    PubMed  CAS  Google Scholar 

  162. Zhang H, Hanada S, Shigematsu T, Shibuya K, Kamagata Y, Kanagawa T, Kurane R (2000) Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ZRSM was financially supported by an ICGEB fellowship. BGC PhD programme is funded by CAPES (Brazil). We thank Paulina Estrada de Los Santos for reading the manuscript and useful suggestions. During the preparation of this review, our dear friend and colleague Jesús Caballero-Mellado unexpectedly passed away; his warm friendship, availability, and important contributions in this research field are very sadly missed. EKJ thanks NERC (UK) for funds, and numerous colleagues and collaborators for participating in the NERC-funded Beta-rhizobia project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Venturi.

Additional information

Jesús Caballero-Mellado deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suárez-Moreno, Z.R., Caballero-Mellado, J., Coutinho, B.G. et al. Common Features of Environmental and Potentially Beneficial Plant-Associated Burkholderia . Microb Ecol 63, 249–266 (2012). https://doi.org/10.1007/s00248-011-9929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9929-1

Keywords

Navigation