Skip to main content
Log in

Sphingorhabdus buctiana sp. nov., isolated from fresh water, and reclassification of Sphingopyxis contaminans as Sphingorhabdus contaminans comb. nov.

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, designated T5T, was isolated from the Chishui River in Maotai town, Guizhou Province, Southwest of China. Strain T5T was found to grow optimally at pH 9.0 and 25 °C. The 16S rRNA gene sequence analysis indicated that strain T5T belongs to the family Sphingomonadaceae within the phylum Proteobacteria; the strain T5T clustered with the type strains of Sphingopyxis contaminans, Sphingorhabdus wooponensis and Sphingorhabdus rigui, with which it exhibits 16S rRNA gene sequence similarity values of 96.2–96.9%. The DNA G+C content was 58.5 mol%. The major respiratory quinone was Q-10 and the major polar lipid was phosphatidylethanolamine. The major polyamine was homospermidine and the major fatty acids were C18:1 ω7c (37.5%) and C16:1 ω7c (30.1%). On the basis of phylogenetic, phenotypic and genetic data, strain T5T represents a novel species of the genus Sphingorhabdus, for which the name Sphingorhabdus buctiana sp. nov. is proposed. The type strain is T5T (= CGMCC 1.12929T = JCM 30114T). It is also proposed that Sphingopyxis contaminans should be reclassified as a member of the genus Sphingorhabdus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Baik KS, Choe HN, Park SC, Hwang YM, Kim EM, Park C, Seong CN (2013) Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis. Int J Syst Evol Microbiol 63:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bernardet JF, Nakagawa Y, Holmes B, for the Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  • Busse J, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8

    Article  CAS  Google Scholar 

  • Da Costa MS, Albuquerque L, Nobre M, Wait R (2011a) The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Method Microbiol 38:197–206

    Article  Google Scholar 

  • Da Costa MS, Albuquerque L, Nobre M, Wait R (2011b) The identification of polar lipids in prokaryotes. Method Microbiol 38:165–181

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Feng QQ, Gao Y, Nogi Y, Tan X, Han L, Zhang Y, Lv J (2015a) Flavobacterium maotaiense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 65:171–176

    Article  CAS  PubMed  Google Scholar 

  • Feng QQ, Han L, Yuan X, Tan X, Gao Y, Lv J (2015b) Flavobacterium procerum sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 65:2702–2708

    Article  CAS  PubMed  Google Scholar 

  • Feng XM, Tan X, Jia L, Long P, Han L, Lv J (2015c) Flavobacterium buctense sp. nov., isolated from freshwater. Arch Microbiol 197:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Feng QQ, Han L, Tan X, Zhang Y, Meng TY, Lu J, Lv J (2016) Seasonal diversity of microbial community in Maotai section of the Chishui River, China. Curr Microbiol 73:924–929

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biology 20:406–416

    Article  Google Scholar 

  • Jogler M, Chen H, Simon J, Rohde M, Busse HJ, Klenk HP, Tindall BJ, Overmann J (2013) Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int J Syst Evol Microbiol 63:1342–1349

    Article  PubMed  Google Scholar 

  • Kim BS, Lim YW, Chun J (2008) Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58:2415–2419

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 125–175

    Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Förster W (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 2:233–241

    Article  CAS  Google Scholar 

  • Murray R, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 21–41

    Google Scholar 

  • Nigam A, Jit S, Lal R (2010) Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60:1038–1043

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Park S, Jung YT, Kim H, Lee JS, Yoon JH (2014) Sphingorhabdus arenilitoris sp. nov., isolated from a coastal sand, and reclassification of Sphingopyxis rigui as Sphingorhabdus rigui comb. nov. and Sphingopyxis wooponensis as Sphingorhabdus wooponensis comb. nov. Int J Syst Evol Microbiol 64:2551–2557

    Article  CAS  PubMed  Google Scholar 

  • Romanenko LA, Tanaka N, Svetashev VI, Mikhailov VV (2015) Sphingorhabdus pacificus sp. nov., isolated from sandy sediments of the Sea of Japan seashore. Arch Microbiol 197:147–153

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Sharma P, Verma M, Bala K, Nigam A, Lal Rup (2010) Sphingopyxis ummariensis sp. nov. isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60:780–784

    Article  CAS  PubMed  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Srinivasan S, Myungkyum K, Sathiyaraj G, Veena V, Mahalakshmi M, Kalaiselvi S et al (2010) Sphingopyxis panaciterrulae sp. nov. isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:2358–2363

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Subhash Y, Ch S, Chv R (2014) Sphingopyxis contaminans sp. nov., isolated from a contaminated petri dish. Int J Syst Evol Microbiol 64:2238–2243

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan X, Zhang RG, Meng TY, Liang HZ, Lv J (2014) Taibaiella chishuiensis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 64:1795–1801

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Richter M, Peplies JJ et al (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Oh TK (2005) Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:369–373

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Nogi Y, Tan X, Zhang RG, Lv J (2014) Arenimonas maotaiensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 64:3994–4000

    Article  PubMed  Google Scholar 

  • Zhang RG, Tan X, Liang Y, Meng TY, Liang HZ, Lv J (2014) Description of Chishuiella changwenlii gen. nov., sp. nov., isolated from freshwater, and transfer of Wautersiella falsenii to the genus Empedobacter as Empedobacter falsenii comb. nov. Int J Syst Evol Microbiol 64:2723–2728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Q. Liang and Z. K. Zhang for their help with sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lv.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain T5T is KJ667149.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Piao, AL., Tan, X. et al. Sphingorhabdus buctiana sp. nov., isolated from fresh water, and reclassification of Sphingopyxis contaminans as Sphingorhabdus contaminans comb. nov.. Antonie van Leeuwenhoek 111, 323–331 (2018). https://doi.org/10.1007/s10482-017-0954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0954-z

Keywords

Navigation