Skip to main content

Advertisement

Log in

Characterization of an extracellularly derived α-mannosidase from the liquid exudate of the sclerotia of Sclerotinia sclerotiorum (Lib.) de Bary

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Class I α-mannosidases play an important role in co- and post-translational N-glycosylation modification of proteins, and also in glycoprotein glycan hydrolysis. Herein, we investigated a protein named Man-41, from liquid exudate droplets secreted on the surface of developing sclerotia by Sclerotinia sclerotiorum. The protein was identified by MALDI-TOF mass spectrometry to be a α-mannosidase. The full-length open reading frame of Man-41 consists of 1581 bp, encoding 526 amino acid residues and containing a putative signal peptide at amino acid residues 1–20, and a conserved sequence at residues 50–521. Man-41 was classified into glycoside hydrolase family 47 (GH47) by clustering analysis. The catalytic residues include Glu125, Arg129, Asp270, Ser271, Glu274, Arg420, Glu422, Glu425, Glu485, Thr514, and Glu515, which are conserved in all Class I α-1,2-mannosidases. Recombinant Man-41 protein had 26.67 ± 2.18 U/mg of α-mannosidase activity, about one-half of intracellular mannosidase activity of sclerotia. In conclusion, this is the first time that mannosidase has been identified in an extracellular fluid and Man-41 is also a new member of GH47 with Ca2+-dependent characteristics. This work lays the foundation for further study of the function of Man-41 in sclerotial development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akao T, Yamaguchi M, Yahara A, Yoshiuchi K, Fujita H, Yamada O, Akita O, Ohmachi T, Asada Y, Yoshida T (2006) Cloning and expression of 1,2-alpha-mannosidase gene (fmanIB) from filamentous fungus Aspergillus oryzae: in vivo visualization of the FmanIBp-GFP fusion protein. Biosci Biotechnol Biochem 70:471–479

    Article  CAS  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biosciences A (2002) GST gene fusion system handbook. The Company, Piscataway

    Google Scholar 

  • Bischoff J, Kornfeld R (1984) The effect of 1-deoxymannojirimycin on rat liver alpha-mannosidases. Biochem Biophys Res Commun 125:324–331

    Article  CAS  PubMed  Google Scholar 

  • Boettner M, Prinz B, Holz C, Stahl U, Lang C (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 99:51–62

    Article  CAS  PubMed  Google Scholar 

  • Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2008) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cooke RC (1969) Changes in soluble carbohydrates during sclerotium formation by Sclerotinia sclerotiorum and S. trifoliorum. Trans Br Mycol Soc 53:77–86

    Article  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eades CJ, Hintz WE (2000) Characterization of the class I alpha-mannosidase gene family in the filamentous fungus Aspergillus nidulans. Gene 255:25–34

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD (1991) Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5:3055–3063

    CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M, Appel R, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Humana Press, New York, pp 571-607

  • Gonzalez DS, Jordan IK (2000) The alpha-mannosidases: phylogeny and adaptive diversification. Mol Biol Evol 17:292–300

    Article  CAS  PubMed  Google Scholar 

  • Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31:3320–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(Pt 2):695–696

    PubMed Central  PubMed  Google Scholar 

  • Herscovics A (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96–107

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A, Schneikert J, Athanassiadis A, Moremen KW (1994) Isolation of a mouse Golgi mannosidase cDNA, a member of a gene family conserved from yeast to mammals. J Biol Chem 269:9864–9871

    CAS  PubMed  Google Scholar 

  • Hossain MA, Nakamura K, Kimura Y (2009) alpha-mannosidase involved in turnover of plant complex type N-glycans in tomato (Lycopersicum esculentum) fruits. Biosci Biotechnol Biochem 73:140–146

    Article  CAS  PubMed  Google Scholar 

  • Ichishima E, Taya N, Ikeguchi M, Chiba Y, Nakamura M, Kawabata C, Inoue T, Takahashi K, Minetoki T, Ozeki K, Kumagai C, Gomi K, Yoshida T, Nakajima T (1999) Molecular and enzymic properties of recombinant 1, 2-alpha-mannosidase from Aspergillus saitoi overexpressed in Aspergillus oryzae cells. Biochem J 339(Pt 3):589–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones D (1970) Ultrastructure and composition of the cell walls of Sclerotinia sclerotiorum. Trans Br Mycol Soc 54:351–360

    Article  CAS  Google Scholar 

  • Lal A, Schutzbach JS, Forsee WT, Neame PJ, Moremen KW (1994) Isolation and expression of murine and rabbit cDNAs encoding an alpha 1,2-mannosidase involved in the processing of asparagine-linked oligosaccharides. J Biol Chem 269:9872–9881

    CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Y, Strelkov SE, Kav NN (2010) The proteome of liquid sclerotial exudates from Sclerotinia sclerotiorum. J Proteome Res 9:3290–3298

    Article  CAS  PubMed  Google Scholar 

  • Liebminger E, Huttner S, Vavra U, Fischl R, Schoberer J, Grass J, Blaukopf C, Seifert GJ, Altmann F, Mach L, Strasser R (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:3850–3867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lobsanov YD, Vallee F, Imberty A, Yoshida T, Yip P, Herscovics A, Howell PL (2002) Structure of Penicillium citrinum alpha 1,2-mannosidase reveals the basis for differences in specificity of the endoplasmic reticulum and Golgi class I enzymes. J Biol Chem 277:5620–5630

    Article  CAS  PubMed  Google Scholar 

  • Lobsanov YD, Yoshida T, Desmet T, Nerinckx W, Yip P, Claeyssens M, Herscovics A, Howell PL (2008) Modulation of activity by Arg407: structure of a fungal-1,2-mannosidase in complex with a substrate analogue. Acta Crystallogr D Biol Crystallogr 64:227–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mast SW, Moremen KW (2006) Family 47 alpha-mannosidases in N-glycan processing. Methods Enzymol 415:31–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mora-Montes HM, Lopez-Romero E, Zinker S, Ponce-Noyola P, Flores-Carreon A (2004) Hydrolysis of Man9GlcNAc2 and Man8GlcNAc2 oligosaccharides by a purified alpha-mannosidase from Candida albicans. Glycobiology 14:593–598

    Article  CAS  PubMed  Google Scholar 

  • Mora-Montes HM, Lopez-Romero E, Zinker S, Ponce-Noyola P, Flores-Carreon A (2006) Purification of soluble alpha1,2-mannosidase from Candida albicans CAI-4. FEMS Microbiol Lett 256:50–56

    Article  CAS  PubMed  Google Scholar 

  • Mora-Montes HM, Lopez-Romero E, Zinker S, Ponce-Noyola P, Flores-Carren A (2008) Heterologous expression and biochemical characterization of α-1,2-mannosidase encoded by the Candida albicans MNS1 gene. Memarias do Inst Oswaldo Cruz 103:724–730

    Article  CAS  Google Scholar 

  • Moremen KW, Ernst B, Hart GW, Sinaý P (2008) α-Mannosidases in asparagine-linked oligosaccharide processing and catabolism. Wiley-VCH Verlag GmbH, Germany, pp 81–117

  • Movsichoff F, Castro OA, Parodi AJ (2005) Characterization of Schizosaccharomyces pombe ER alpha-mannosidase: a reevaluation of the role of the enzyme on ER-associated degradation. Mol Biol Cell 16:4714–4724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Prence EM, Natowicz MR (1992) Diagnosis of alpha-mannosidosis by measuring alpha-mannosidase in plasma. Clin Chem 38:501–503

    CAS  PubMed  Google Scholar 

  • Rajesh T, Jeon JM, Song E, Park HM, Seo HM, Kim HJ, Yi DH, Kim YH, Choi KY, Kim YG, Park HY, Lee YK, Yang YH (2014) Putative role of a Streptomyces coelicolor-derived alpha-mannosidase in deglycosylation and antibiotic production. Appl Biochem Biotechnol 172:1639–1651

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Marrero CA, Ritzenthaler JD, Roman J, Moremen KW (2001) Molecular cloning and expression of an alpha-mannosidase gene in Mycobacterium tuberculosis. Microb Pathog 30:9–18

    Article  CAS  PubMed  Google Scholar 

  • Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  • Schrodinger, LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

    Article  CAS  PubMed  Google Scholar 

  • Tremblay LO, Herscovics A (2000) Characterization of a cDNA encoding a novel human Golgi alpha 1, 2-mannosidase (IC) involved in N-glycan biosynthesis. J Biol Chem 275:31655–31660

    Article  CAS  PubMed  Google Scholar 

  • Vallée F, Karaveg K, Herscovics A, Moremen KW, Howell PL (2000) Structural basis for catalysis and inhibition of N-glycan processing class I α1,2-mannosidases. J Biol Chem 275:41287–41298

    Article  PubMed  Google Scholar 

  • Van Petegem F, Contreras H, Contreras R, Van Beeumen J (2001) Trichoderma reesei alpha-1,2-mannosidase: structural basis for the cleavage of four consecutive mannose residues. J Mol Biol 312:157–165

    Article  PubMed  Google Scholar 

  • Wang SS, Xu XJ, Lu H (2012) Progress in alpha-mannosidases. Prog. Vet Med 33:92–97

    Google Scholar 

  • Westermeier R (2006) Sensitive, quantitative, and fast modifications for Coomassie Blue staining of polyacrylamide gels. Proteomics 6:61–64

    Article  PubMed  Google Scholar 

  • Zhou J, Lin CZ, Zheng XZ, Lin XJ, Sang WJ, Wang SH, Wang ZH, Ebbole D, Lu GD (2009) Functional analysis of an alpha-1,2-mannosidase from Magnaporthe oryzae. Curr Genet 55:485–496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hong Jin from Fudan University for TOF–MS analysis and Di Guan from Hunan Academy of Agricultural Sciences for ICP-MS analysis. This work was supported by the National 973 Project of China (2012CB910501) and the National Natural Science Foundation of China (31071455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Liu.

Additional information

Zhengli Liu and Ran Wei have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wei, R., He, W. et al. Characterization of an extracellularly derived α-mannosidase from the liquid exudate of the sclerotia of Sclerotinia sclerotiorum (Lib.) de Bary. Antonie van Leeuwenhoek 108, 107–115 (2015). https://doi.org/10.1007/s10482-015-0468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0468-5

Keywords

Navigation