Skip to main content

Advertisement

Log in

Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Biofilm-related infections are considered a major cause of morbidity and mortality in hospital environments. Biofilms allow microorganisms to exchange genetic material and to become persistent colonizers and/or multiresistant to antibiotics. Corynebacterium pseudodiphtheriticum (CPS), a commensal bacterium that colonizes skin and mucosal sites has become progressively multiresistant and responsible for severe nosocomial infections. However, virulence factors of this emergent pathogen remain unclear. Herein, we report the adhesive properties and biofilm formation on hydrophilic (glass) and hydrophobic (plastic) abiotic surfaces by CPS strains isolated from patients with localized (ATCC10700/Pharyngitis) and systemic (HHC1507/Bacteremia) infections. Adherence to polystyrene attributed to hydrophobic interactions between bacterial cells and this negatively charged surface indicated the involvement of cell surface hydrophobicity in the initial stage of biofilm formation. Attached microorganisms multiplied and formed microcolonies that accumulated as multilayered cell clusters, a step that involved intercellular adhesion and synthesis of extracellular matrix molecules. Further growth led to the formation of dense bacterial aggregates embedded in the exopolymeric matrix surrounded by voids, typical of mature biofilms. Data also showed CPS recognizing human fibrinogen (Fbg) and fibronectin (Fn) and involvement of these sera components in formation of “conditioning films”. These findings suggested that biofilm formation may be associated with the expression of different adhesins. CPS may form biofilms in vivo possibly by an adherent biofilm mode of growth in vitro currently demonstrated on hydrophilic and hydrophobic abiotic surfaces. The affinity to Fbg and Fn and the biofilm-forming ability may contribute to the establishment and dissemination of infection caused by CPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed K, Kawakami K, Watanabe K, Mitsushima H, Nagatake T, Matsumoto K (1995) Corynebacterium pseudodiphtheriticum: a respiratory tract pathogen. Clin Infect Dis 20:41–46. doi:10.1093/clinids/20.1.41

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Ueda M, Kanzaki H, Tada J, Arata J (1997) Biofilm formation of Staphylococcus aureus strains isolated from impetigo and furuncle: role of fibrinogen and fibrin. J Dermatol Sci 16:2–10

    Article  CAS  PubMed  Google Scholar 

  • Almuzara MN, De Mier C, Rodríguez CR, Famiglietti AM, Vay CA (2006) Evaluation of API Coryne system, version 2.0, for diphtheroid gram-positive rods identification with clinical relevance. Rev Argent Microbiol 38:197–201

    CAS  PubMed  Google Scholar 

  • Arciola CR, Campoccia D, Gamberini S, Baldassarri L, Montanaro L (2005) Prevalence of cna, fnbA and fnbB adhesin genes among Staphylococcus aureus isolates from orthopedic infections associated to different types of implant. FEMS Microbiol Lett 246:81–86

    Article  CAS  PubMed  Google Scholar 

  • Bonifait L, Grignon L, Grenier D (2008) Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance. Appl Environ Microbiol 74:4969–4972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Camello TCF, Mattos-Guaraldi AL, Formiga LCD, Marques EA (2003) Nondiphtherial Corynebacterium species isolated from clinical specimens of patients in a university hospital, Rio de Janeiro, Brazil. Braz J Microbiol 34:39–44

    Article  CAS  Google Scholar 

  • Camello TCF, Souza MC, Martins CA, Damasco PV, Marques EA, Pimenta FP, Pereira GA, JrR Hirata, Mattos-Guaraldi AL (2009) Corynebacterium pseudodiphtheriticum isolated from relevant clinical sites of infection: a human pathogen overlooked in emerging countries. Lett Appl Microbiol 48:458–464

    Article  CAS  PubMed  Google Scholar 

  • Chávez de Paz LE, Resin A, Howard KA, Sutherland DS, Wejse PL (2011) Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheung AL, Krishnan M, Jaffe EA, Fischetti VA (1991) Fibrinogen acts as a bridging molecule in the adherence of Staphylococcus aureus to cultured human endothelial cells. J Clin Invest 87:2236–2245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colt HG, Morris JF, Marston BJ, Sewell DL (1991) Necrotizing tracheitis caused by Corynebacterium pseudodiphtheriticum: unique case and review. Rev Infect Dis 113:73–76

    Article  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Craig TJ, Maguire FE, Wallace MR (1991) Tracheobronchitis due to Corynebacterium pseudodiphtheriticum. South Med J 84:504–506

    Article  CAS  PubMed  Google Scholar 

  • Das BB, Schnell P, Mendez H (2003) Corynebacterium pseudodiphtheriticum bacteremia in an immunocompetent adolescent: a case report an review of literature. East J Med 8:18–19

    Google Scholar 

  • Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Höök M (2001) SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem 276:27799–27805

    Article  CAS  PubMed  Google Scholar 

  • Donlan RM (2008) Biofilms on central venous catheters: is eradication possible? Curr Top Microbiol Immunol 322:133–161

    CAS  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dooley DP, Garcia A, Kelly JW, Longfield RN, Harrison L (1996) Validation of catheter semiquantitative culture technique for non staphylococcal organisms. J Clin Microbiol 34:409–412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franson TR, Shet NK, Rose HD, Sohnle PG (1984) Scanning electron microscopy of bacteria adherent to intravascular catheters. J Clin Microbiol 20:500–505

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujiyama R, Nishi J, Imuta N, Tokuda K, Manago K, Kawano Y (2008) The shf gene of a Shigella flexneri homologue on the virulent plasmid pAA2 of enteroaggregative Escherichia coli 042 is required for firm biofilm formation. Curr Microbiol 56:474–480

    Article  CAS  PubMed  Google Scholar 

  • Gomes DL, Martins CA, Faria LM, Santos LS, Santos CS, Sabbadini PS, Souza MC, Alves GB, Rosa AC, Nagao PE, Pereira GA, Hirata R Jr, Mattos-Guaraldi AL (2009) Corynebacterium diphtheriae as an emerging pathogen in nephrostomy catheter-related infection: evaluation of traits associated with bacterial virulence. J Med Microbiol 58:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Harlow EE, Lane DP (1988) Antibodies: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory Press, New York, p 726

    Google Scholar 

  • Harrington SM, Dudley EG, Nataro JP (2006) Pathogenesis of enteroaggregative Escherichia coli infection. FEMS Microbiol Lett 254:12–18

    Article  CAS  PubMed  Google Scholar 

  • Henderson B, Nair S, Pallas J, Williams MA (2011) Fibronectin: a multidomain host adhesion targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35:147–200

    Article  CAS  PubMed  Google Scholar 

  • Hirata R, Napoleão F, Monteiro-Leal LH, Andrade AF, Nagao PE, Formiga LC, Fonseca LS, Mattos-Guaraldi AL (2002) Intracellular viability of toxigenic Corynebacterium diphtheriae strains in HEp-2 cells. FEMS Microbiol Lett 215:115–119

    Article  CAS  PubMed  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    Article  PubMed  Google Scholar 

  • Huang CT, Yu FP, McFeters GA, Stewart PS (1995) Appl Environ Microbiol 61(6):2252–2256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang DB, Mohanty A, DuPont HL, Okhuysen PC, Chiang T (2006) A review of an emerging enteric pathogen: enteroaggregative Escherichia coli. J Med Microbiol 55:1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (1990) Fibronectins, 1st edn. Molecullar and cell biology. Springer, New York

  • Izurieta HS, Strebel PM, Youngblood T, Hollis DG, Popovic T (1997) Exudative pharyngitis possibly due to Corynebacterium pseudodiphtheriticum, a new challenge in the differential diagnosis of diphtheria. Emerg Infect Dis 73:65–68

    Article  Google Scholar 

  • Jensen PO, Givskov M, Bjarnsholt T, Moser C (2010) The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 59(3):292–305

    CAS  PubMed  Google Scholar 

  • JrR Hirata, Pereira GA, Filardy AA, Gomes DL, Damasco PV, Rosa AC, Nagao PE, Pimenta FP, Mattos-Guaraldi AL (2008) Potential pathogenic role of aggregative-adhering Corynebacterium diphtheriae of different clonal groups in endocarditis. Braz J Med Biol Res 41:986–991

    Article  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kwaszewska AK, Brewczyńska A, Szewczyk EM (2006) Hydrophobicity and biofilm formation of lipophilic skin corynebacteria. Pol J Microbiol 55:189–193

    Article  PubMed  Google Scholar 

  • Lembke C, Podbielski A, Hidalgo-Grass C, Jonas L, Hanski E, Kreikemeyer B (2006) Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol 72:2864–2875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maki DG, Weise CE, Sarafin HW (1977) A semi quantitative culture method for identifying intravenous catheter-related infection. N Engl J Med 296:1305–1309

    Article  CAS  PubMed  Google Scholar 

  • Martins C, Faria L, Souza M, Camello T, Velasco E, JrR Hirata, Thuler L, Mattos-Guaraldi AL (2009) Microbiological and host features associated with corynebacteriosis in cancer patients: a five-year study. Mem Inst Oswaldo Cruz 104:905–913

    Article  PubMed  Google Scholar 

  • Mattos-Guaraldi AL, Formiga LCD (1991) Relationship of biotype and source to the hemagglutination and adhesive properties of Corynebacterium diphtheriae. Braz J Med Biol Res 24:399–406

    CAS  PubMed  Google Scholar 

  • Mattos-Guaraldi AL, Formiga LCD, Andrade AFB (1999) Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr Microbiol 38:37–42

    Article  CAS  PubMed  Google Scholar 

  • Moreira LO, Andrade AF, Vale MD, Souza SM, Hirata R Jr, Asad LM, Asad NR, Monteiro-Leal LH, Previato JO, Mattos-Guaraldi AL (2003) Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl Environ Microbiol 69:5907–5913

    Article  PubMed Central  CAS  Google Scholar 

  • Morinaga Y, Yanagihara K, Yamada K, Nakamura S, Izumikawa K, Seki M, Kakeya H, Yamamoto Y, Inoue Y, Kamihira S, Kohno S (2010) Two cases of Corynebacterium pseudodiphtheriticum respiratory tract infection. Kansenshogaku Zasshi 84:65–68

    PubMed  Google Scholar 

  • Morris A, Guild I (1991) Endocarditis due to Corynebacterium pseudodiphtheriticum: five case reports, review, and antibiotic susceptibilities of nine strains. Rev Infect Dis 13:887–892

    Article  CAS  PubMed  Google Scholar 

  • Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904

    Article  CAS  PubMed  Google Scholar 

  • Nathan AW, Turner DR, Aubrey C, Cameron JS, Williams DG, Ogg CS, Bewick M (1982) Corynebacterium hofmannii infection after renal transplantation. Clin Nephrol 17:315–318

    CAS  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Olender A, Niemcewicz M (2010) Macrolide, lincosamide, and streptogramin B-constitutive-type resistance in Corynebacterium pseudodiphtheriticum isolated from upper respiratory tract specimens. Microb Drug Resist 16:119–122

    Article  CAS  PubMed  Google Scholar 

  • Oliveira R, Azeredo J, Teixeira P (2003) The importance of physicochemical properties in biofilm formation and activity. In: Wuertz S, Bishop PL, Wilderer PA (eds) Biofilms in wastewater treatment: an interdisciplinary approach. IWA Publishing, London, p 401

    Google Scholar 

  • Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92

    PubMed Central  PubMed  Google Scholar 

  • O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O’Gara JP (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–8350

    Article  PubMed Central  PubMed  Google Scholar 

  • Pereira ACM, Britto-Filho JD, Carvalho JJ, Luna MG, Rosa ACP (2008) Escherichia coli enteroaggregative (EAEC) strains enter and survive within cultured intestinal epithelial cells. Microb Pathog 45:310–314

    Article  CAS  PubMed  Google Scholar 

  • Resch A, Leicht S, Saric M, Pasztor L, Jakob A, Gotz F, Nordheim A (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6:1867–1877

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M (1981) Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42:375–377

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sabbadini PS, Genovez MR, Silva CF, Adelino TL, Santos CS, Pereira GA, Nagao PE, Dias AA, Mattos-Guaraldi AL, Hirata R Jr (2010) Fibrinogen binds to nontoxigenic and toxigenic Corynebacterium diphtheriae strains. Mem Inst Oswaldo Cruz 105:706–711

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES, Briggs JAG, Gough TS, HoÈoÈk M, Campbell ID, Potts JR (2003) Pathogenic bacteria attach to human fibronectin through a tandem β-zipper. Nature 423:177–180

    Article  CAS  PubMed  Google Scholar 

  • Smani Y, McConnell MJ, Pachón J (2012) Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS One 7:1–7

    Article  Google Scholar 

  • Soriano F, Huelves L, Naves P, Rodriguez-Cerrato V, Del Prado G, Ruiz V, Ponte C (2008) In vitro activity of ciprofloxacin, moxifloxacin, vancomycin and erythromycin against planktonic and biofilm forms of Corynebacterium urealyticum. J Antimicrob Chemother 63:353–356

    Article  PubMed  Google Scholar 

  • Sousa C, Botelho C, Oliveira R (2011) Nanotechnology applied to medical biofilms control. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advance. Formatex Research Center, Badajoz, pp 878–888

    Google Scholar 

  • Souza SMS, Nagao PE, Bernardo-Filho M, Pereira GA, Napoleão F, Andrade AFB, Hirata R Jr, Mattos-Guaraldi AL (2004) Technetium-99m labeling and fibronectin binding ability of Corynebacterium diphtheriae. Braz J Biomed Eng 20:35–40

    Google Scholar 

  • Souza MC, Santos LS, Gomes DL, Sabbadini OS, Santos CS, Camello TC, Asad LM, Rosa AC, Nagao PE, JrR Hirata, Mattos-Guaraldi AL (2012) Aggregative adherent strains of Corynebacterium pseudodiphtheriticum enter and survive within HEp-2 epithelial cells. Mem Inst Oswaldo Cruz 107:486–493

    Article  PubMed  Google Scholar 

  • Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924

    Article  CAS  PubMed  Google Scholar 

  • Stepanovic S, Vukovic D, Davic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Iihara H, Uno T, Hara Y, Ohkusu K, Hata H, Shudo M, Ohashi Y (2007) Suture-related keratitis caused by Corynebacterium macginleyi. J Clin Microbiol 45:3833–3836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tenenbaum T, Bloier C, Adam R, Reinscheid DJ, Schroten H (2005) Adherence to and invasion of human brain microvascular endothelial cells are promoted by fibrinogen-binding protein FbsA of Streptococcus agalactiae. Infect Immun 73:4404–4409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • The API web decoding system. https://apiweb.biomerieux.com/

  • von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685

    Article  Google Scholar 

  • von Graevenitz A, Punter-Streit V, Riegel P, Funke G (1998) Coryneform bacteria in throat cultures of healthy individuals. J Clin Microbiol 36:2087–2088

    Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Mattson D, Wald A (2001) Corynebacterium jeikeium bacteremia in bone marrow transplant patients with Hickman catheters. Bone Marrow Transplant 27:445–449

    Article  CAS  PubMed  Google Scholar 

  • Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552

    Article  CAS  PubMed  Google Scholar 

  • Yanagawa R, Honda E (1976) Presence of pili in species of human and animal parasites and pathogens of the genus Corynebacterium. Infect Immun 13:1293–1295

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from CAPES, CNPq, FAPERJ, SR-2/UERJ, PNPD (CNPq/CAPES), PAPD (FAPERJ/CAPES) and PRONEX of the Brazilian Ministry of Science and Technology. We are also grateful to Noêmia Rodrigues Gonçalves Alves from Cellular Ultrastructure Laboratory Hertha Meyer-Universidade Federal do Rio de Janeiro, for electron microscopy technical assistance.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luiza Mattos-Guaraldi.

Additional information

Monica Cristina Souza and Louisy Sanches dos Santos have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, M.C., dos Santos, L.S., Sousa, L.P. et al. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains. Antonie van Leeuwenhoek 107, 1387–1399 (2015). https://doi.org/10.1007/s10482-015-0433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0433-3

Keywords

Navigation