Skip to main content
Log in

Yamadazyma siamensis sp. nov., Yamadazyma phyllophila sp. nov. and Yamadazyma paraphyllophila sp. nov., three novel yeast species isolated from phylloplane in Thailand and Taiwan

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Four strains representing three novel anamorphic yeast species were isolated from the external surface of sugarcane leaves (DMKU-RK254T), corn leaves (DMKU-RK548T), bean leaves (K129) in Thailand and hengchun pencilwood leaves (TrB1-1T) in Taiwan. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene, the internal transcribed spacer (ITS) region, the actin gene (ACT1) and the elongation factor 2 gene (EF2), the four strains were determined to represent novel Yamadazyma species although formation of ascospores was not observed. Strain DMKU-RK254T was determined to be related to Candida diddensiae, Candida naeodendra and Candida kanchanaburiensis but with 1.8, 1.8 and 2.0 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene, respectively. It was assigned to Yamadazyma siamensis sp. nov. (type strain DMKU-RK254T = BCC 50730T = NBRC 108901T = CBS 12573T). The sequences of the D1/D2 region of the LSU rRNA gene, the ITS region, ACT1 gene and EF2 gene of two strains (DMKU-RK548T and K129) were identical but differed from that of strain TrB1-1T by 0.6, 1.0, 3.3 and 5.9 % nucleotide substitutions, respectively. Therefore, the two strains (DMKU-RK548T and K129) and strain TrB1-1T were assigned to be two separate species. The closest species in terms of pairwise sequences similarity of the D1/D2 region to the two novel species was Yamadazyma philogaea but with 1.1–1.7 % nucleotide substitutions. The two strains (DMKU-RK548T and K129) were assigned to Yamadazyma phyllophila sp. nov. (type strain DMKU-RK548T = BCC 50736T = NBRC 108906T = CBS 12572T) and the strain TrB1-1T was named Yamadazyma paraphyllophila sp. nov. (type strain TrB1-1T = BCRC 23030T = CCTCC AY 204005T = CBS 9928T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer JZ, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Billon-Grand G (1989) A new ascosporogenous yeast genus: Yamadazyma gen. nov. Mycotaxon 35:201–204

    Google Scholar 

  • Burgaud G, Arzur D, Sampaio JP, Barbier G (2011) Candida oceani sp. nov., a novel yeast isolated from a Mid-Atlantic Ridge hydrothermal vent (−2,300 meters). Antonie Van Leeuwenhoek. doi:10.1007/s10482-011-9566-1

    PubMed  Google Scholar 

  • de Azeredo LAI, Gomes EAT, Mendonca-Hagler LC, Hagler AN (1998) Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brazil. Int Microbiol 1:205–208

    PubMed  Google Scholar 

  • Diezmann S, Cox CJ, Schonian G, Vilgalys RJ, Mitchell TG (2004) Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J Clin Microbiol 42:5624–5635

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fonseca A, Inacio J (2006) Phylloplane yeasts. In: Rosa C, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Glushakova AM, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839

    Article  CAS  Google Scholar 

  • Glushakova AM, Yurkov AM, Chernov IY (2007) Massive isolation of anamorphous ascomycete yeasts Candida oleophila from plant phyllosphere. Microbiology 76:799–803

    Article  CAS  Google Scholar 

  • Groenewald M, Robert V, Smith MTh (2011) The value of the D1/D2 and internal transcribed spacers (ITS) domains for the identification of yeast species belonging to the genus Yamadazyma. Persoonia 26:40–46

    Article  PubMed  CAS  Google Scholar 

  • Imanishi Y, Jindamorakot S, Limtong S, Nakase T (2009) Mode of vegetative reproduction of the bipolar budding yeast species Wickerhamomyces pijperi and related strains. J Clin Microbiol 42:5624–5635

    Google Scholar 

  • Kaewwichian R, Yongmanitchai W, Kawasaki H, Limtong S (2012) Metschnikowia saccharicola sp. nov. and Metschnikowia lopburiensis sp. nov., two novel yeast species isolated from phylloplane in Thailand. Antonie Van Leeuwenhoek 102:743–751

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Koowadjanakul N, Jindamorakot S, Yongmanitchai W, Limtong S (2011) Ogataea phyllophila sp. nov., Candida chumphonensis sp. nov. and Candida mattranensis sp. nov., three methylotrophic yeast species from phylloplane in Thailand. Antonie Van Leeuwenhoek 100:207–217

    Article  PubMed  Google Scholar 

  • Kuraishi H, Katayama-Fujimura Y, Sugiyama J, Yokoyama T (1985) Ubiquinone systems in fungi. I. Distribution of ubiquinones in the major families of ascomycetes, basidiomycetes, and deuteromycetes, and their taxonomic implications. Trans Mycol Soc Jpn 26:383–395

    Google Scholar 

  • Kurtzman CP (2011) Yamadazyma Billon-Grand. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, vol 2, p 919–925

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leewenhoek 73:331–371

    Article  CAS  Google Scholar 

  • Kurtzman CP, Suzuki M (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2–14

    Article  CAS  Google Scholar 

  • Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP, Boundy-Mills K (2003) The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res 4:253–258

    Article  PubMed  CAS  Google Scholar 

  • Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida Berkhout. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, vol 2, pp 987–1279

  • Landell MF, Billodre R, Ramos JP, Leoncini O, Vainstein MH, Valente P (2010) Candida aechmeae sp. nov. and Candida vrieseae sp. nov., novel yeast species isolated from the phylloplane of bromeliads in Southern Brazil. Int J Syst Evol Microbiol 60:244–248

    Article  PubMed  CAS  Google Scholar 

  • Lee CF, Lee FL, Hsu WH, Phaff HJ (1994) Arthroascus fermentans, a new yeast species isolated from soil in Taiwan. Int J Syst Bacteriol 44:303–307

    Article  CAS  Google Scholar 

  • Limtong S, Yongmanitchai W, Tun MM, Kawasaki H, Seki T (2007) Kazachstania siamensis sp. nov., an ascomycetous yeast species from forest soil in Thailand. Int J Syst Evol Microbiol 57:419–422

    Article  PubMed  Google Scholar 

  • Nakase T, Suzuki M (1986) Bullera megalospora, a new species of yeast forming larger ballistospores isolated from dead leaves of Oryza sativa, Miscanthus sinesis and Sasa sp. in Japan. J Gen Appl Microbiol 32:225–240

    Article  CAS  Google Scholar 

  • Nakase T, Takashima M, Itoh M, Fungsin B, Potacharoen W, Atthasampunna P, Komagata K (2001) Ballistoconidium forming yeasts found in the phyllosphere of Thailand. Microbiol Cult Collect 17:23–33

    Google Scholar 

  • Nakase T, Jindamorakot S, Ninomiya S, Imanishi Y, Kawasaki H, Potacharoen W (2008) Candida kanchanaburiensis sp. nov., a new ascomycetous yeast species related to Pichia nakazawae isolated in Thailand. J Gen Appl Microbiol 54:259–265

    Article  PubMed  CAS  Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison JS (eds) The yeasts, 2nd edn. Academic, London, pp 123–180

    Google Scholar 

  • Rosa CA, Morais PB, Santos SR, Neto PRP, Mendonca-Hagler LC, Hagler AN (1995) Yeast communities associated with different plant resources in sandy coastal plains of south eastern Brazil. Mycol Res 99:1047–1054

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Slavikova E, Vadkertiova R, Vranova D (2009) Yeasts colonizing the leaves of fruit trees. Ann Microbiol 59:419–424

    Article  CAS  Google Scholar 

  • Tamaoka M, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics (MEGA) Soft-ware version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Yamada Y, Kondo K (1973) Coenzyme Q system in the classification of the yeast genera Rhodotorula and Cryptococcus, and the yeast-like genera Sporobolomyces and Rhodosporidium. J Gen Appl Microbiol 19:59–77

    Article  CAS  Google Scholar 

  • Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund through Royal Golden Jubilee Ph.D. program Grant No. PHD/0215/2551, TRF Research-Team Promotion Grant (RTA5480009), NITE Biological Resource Center (NBRC) and National Science Council, ROC for funding the research (94-2621-B-029-005). The authors would like to thank Dr. Ken-ichiro Suzuki director for Biological Resource Center (NBRC) for allowing Ms Rungluk Kaewwichian to do a part of this research at NITE Biological Resource Center, Department of Biotechnology (NBRC), National Institute of Technology and Evaluation (NITE), Chiba, Japan. Special thanks go to Mr. Atsushi Yamazaki and Mrs. Yumiko Miyazaki for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savitree Limtong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaewwichian, R., Yongmanitchai, W., Kawasaki, H. et al. Yamadazyma siamensis sp. nov., Yamadazyma phyllophila sp. nov. and Yamadazyma paraphyllophila sp. nov., three novel yeast species isolated from phylloplane in Thailand and Taiwan. Antonie van Leeuwenhoek 103, 777–788 (2013). https://doi.org/10.1007/s10482-012-9860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9860-6

Keywords

Navigation