Skip to main content
Log in

Actinomycetes genome engineering approaches

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This review provides an overview of new technologies for DNA manipulations in actinomycetes exploiting recombinogenic engineering (Flp-FRT, Cre-loxP, Dre-rox, Tn5, GusA and I-SceI systems). We will describe some new vectors recently developed for engineering of complex phenotypes in actinomycetes. Several site-specific recombinases, transposons, reporter genes and I-SceI endonuclease have been utilized for genome manipulation in actinomycetes. Novel molecular tools will help to overcome many technical difficulties and will encourage new efforts to address the function of actinomycete genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baltz RH, McHenney MA, Cantwell CA, Queener SW, Solenberg PJ (1997) Applications of transposition mutagenesis in antibiotic producing streptomycetes. Antonie Van Leuwenhoek 71:179–187

    Article  CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O′Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bhatt A, Kieser T (1999) Transposition of IS117 of Streptomyces coelicolor A3(2) in Mycobacterium smegmatis. Microbiology 145:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Bierman M, Logan R, O’Brian K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  CAS  PubMed  Google Scholar 

  • Capstick DS, Willey JM, Buttner MJ, Elliot MA (2007) SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol Microbiol 64:602–613

    Article  CAS  PubMed  Google Scholar 

  • Crameri A, Whitehorn E, Tate E, Stemmer W (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Article  CAS  PubMed  Google Scholar 

  • Craney A, Hohenauer T, Xu Y, Navani NK, Li Y, Nodwell J (2007) A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria. Nucl Acids Res 35:e46–e46

    Article  PubMed  Google Scholar 

  • Fedoryshyn M, Petzke L, Welle E, Bechthold A, Luzhetskyy A (2008a) Marker removal from actinomycetes genome using Flp recombinase. Gene 419:43–47

    Article  CAS  PubMed  Google Scholar 

  • Fedoryshyn M, Welle E, Bechthold A, Luzhetskyy A (2008b) Functional expression of the Cre recombinase in actinomycetes. Appl Microbiol Biotechnol 78:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Martínez LT, Del Sol R, Evans RM, Fielding S, Herron PR, Chandra G, Dyson PJ (2011) A transposon insertion single-gene knockout library and new ordered cosmid library for the model organism Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek 99:515–522

    Article  PubMed  Google Scholar 

  • Gehring AM, Nodwell JR, Beverley SM, Losick R (2000) Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci USA 97:9642–9647

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Escribano JP, Bibb MJ (2011) Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4:207–215

    Article  CAS  PubMed  Google Scholar 

  • Goryshin I, Jendrisak J, Hoffman L, Meis R, Reznikoff WS (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100

    Article  CAS  PubMed  Google Scholar 

  • Guenes G, Smith B, Dyson P (1999) Genetic instability associated with insertion of IS6100 into one end of the Streptomyces lividans chromosome. Microbiology 145:2203–2208

    Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  CAS  PubMed  Google Scholar 

  • Haseloff J, Amos B (1995) GFP in plants. Trends Genet 11:328–329

    Article  CAS  PubMed  Google Scholar 

  • Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A (2012) Site-specific recombinase strategies for engineering actinomycetes genome. Appl Environ Microbiol 78:1804–1812

    Article  CAS  PubMed  Google Scholar 

  • Hutter H (2006) Fluorescent reporter methods. Methods Mol Biol 351:155–173

    CAS  PubMed  Google Scholar 

  • Ikeda H, Takada Y, Pang CH, Tanaka H, Omura S (1993) Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol 175:2077–2082

    CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Ingram C, Brawner M, Youngman P, Westpheling J (1989) xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol 171:6617–6624

    CAS  PubMed  Google Scholar 

  • Janes BK, Stibitz S (2006) Routine markerless gene replacement in Bacillus anthracis. Infect Immun 74:1949–1953

    Article  CAS  PubMed  Google Scholar 

  • Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12:224–228

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, Smith MC (2006) Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucl Acids Res 34:e20

    Article  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651

    Article  CAS  PubMed  Google Scholar 

  • Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204

    CAS  PubMed  Google Scholar 

  • Kuhstoss S, Richardson MA, Rao RN (1991) Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97:143–146

    Article  CAS  PubMed  Google Scholar 

  • Leibig M, Krismer B, Kolb M, Friede A, Götz F, Bertram R (2008) Marker removal in Staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol 74:1316–1323

    Article  CAS  PubMed  Google Scholar 

  • Lopez C, Rholl D, Trunk L, Schweizer P (2009) Versatile dual- technology system for markerless allele replacement in Burkholderia pseudomallei. Appl Environ Microbiol 20:6496–6503

    Article  Google Scholar 

  • Luzhetskyy A, Zhu L, Gibson M, Fedoryshyn M, Dürr C, Hofmann C, Hoffmeister D, Ostash B, Mattingly C, Adams V, Fedorenko V, Rohr J, Bechthold A (2005) Generation of Novel Landomycins M and O Through Targeted Gene Disruption. ChemBioChem 4:675–678

    Article  Google Scholar 

  • Malaga W, Perez E, Guilhot C (2003) Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol Lett 219:261–268

    Article  CAS  PubMed  Google Scholar 

  • Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in Gram-negative bacteria. Biotechniques 233:1062–1067

    Google Scholar 

  • Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77:5370–5383

    Article  CAS  PubMed  Google Scholar 

  • Nordeen SK (1988) Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 6:454–458

    CAS  PubMed  Google Scholar 

  • Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25:447–453

    Article  CAS  PubMed  Google Scholar 

  • Petzke L, Luzhetskyy A (2009) In vivo Tn5 transposon mutagenesis of streptomycetes. Appl Microbiol Biotechnol 83:979–986

    Article  CAS  PubMed  Google Scholar 

  • Pitman A, Herron P, Dyson P (2002) Cointegrate resolution following transposistion of Tn1792 in Streptomyces avermitilis facilitates analysis of transposon-tagged genes. J Microbiol Methods 49:89–96

    Article  CAS  PubMed  Google Scholar 

  • Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415

    Article  CAS  PubMed  Google Scholar 

  • Raynal A, Karray F, Tuphile K, Darbon-Rongère E, Pernodet JL (2006) Excisable cassettes: new tools for functional analysis of Streptomyces genomes. Appl Environ Microbiol 72:4839–4844

    Article  CAS  PubMed  Google Scholar 

  • Schmitz UK, Lonsdale DM, Jefferson RA (1990) Application of the beta-glucuronidase gene fusion system to Saccharomyces cerevisiae. Curr Genet 17:261–264

    Article  CAS  PubMed  Google Scholar 

  • Schweizer HP (2003) Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics. J Mol Microbiol Biotechnol 5:67–77

    Article  CAS  PubMed  Google Scholar 

  • Sekurova ON, Brautaset T, Sletta H, Borgos SE, Jakobsen MO, Ellingsen TE, Strom AR, Valla S, Zotchev SB (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Shaw WV, Hopwood DA (1976) Chloramphenicol acetylation in Streptomyces. J Gen Microbiol 94:159–166

    Article  CAS  PubMed  Google Scholar 

  • Siegl T, Petzke L, Welle E, Luzhetskyy A (2010) I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomycetes. Appl Microbiol Biotechnol 87:1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Slauch JM, Camilli A (2000) IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues. Methods Enzymol 326:73–96

    Article  CAS  PubMed  Google Scholar 

  • Solenberg PJ, Baltz RH (1991) Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus. J Bacteriol 173:1096–1104

    CAS  PubMed  Google Scholar 

  • Steiniger M, Metzler J, Reznikoff WS (2006) Mutation of Tn5 transposase beta-loop residues affects all steps of Tn5 transposition: the role of conformational changes in Tn5 transposition. Biochemistry 45:15552–15562

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Kelemen GH, Fernández-Abalos JM, Bibb MJ (1999) Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145:2221–2227

    CAS  PubMed  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71:8472–8480

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Tao M, Long F, Bibb MJ, Wang L, Li W, Buttner MJ, Bibb MJ, Deng ZX, Chater KF (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50:475–486

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Altenbuchner J (1997) High frequency transposition of the Tn5 derivative Tn5493 in Streptomyces lividans. Gene 194:81–86

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ (1986) Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203:468–478

    Article  CAS  PubMed  Google Scholar 

  • Wildenbrant E, Kao C (2007) Introduction of the foreign transposon Tn4560 in Streptomyces coelicolor leads to genetic instability near the native insertion sequence IS1649. J Bacteriol 189:9108–9116

    Article  Google Scholar 

  • Willemse J, van Wezel GP (2009) Imaging of Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization. PLoS ONE 4:e4242

    Article  PubMed  Google Scholar 

  • Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230

    Article  CAS  PubMed  Google Scholar 

  • Zelyas N, Tahlan K, Jensen SE (2009) Use of the native flp gene to generate in-frame unmarked mutations in Streptomyces ssp. Gene 443:48–54

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bao Y, Shi X, Ou X, Zhou P, Ding X (2012) Efficient transposition of IS204-derive plasmids in Streptomyces coelicolor. J Microbiol Methods 88:67–72

    Article  CAS  PubMed  Google Scholar 

  • Zukowski MM, Gaffney DF, Speck D, Kauffmann M, Findeli A, Wisecup A, Lecocq JP (1983) Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci USA 80:1101–1105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the laboratory of AL was supported by the BMBF (GenBioCom), DFG (Lu1524/2-1) and ERC (EXPLOGEN) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Luzhetskyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegl, T., Luzhetskyy, A. Actinomycetes genome engineering approaches. Antonie van Leeuwenhoek 102, 503–516 (2012). https://doi.org/10.1007/s10482-012-9795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9795-y

Keywords

Navigation