Skip to main content

Advertisement

Log in

Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Multidrug-resistant tuberculosis (MDR-TB) and TB–HIV co-infection have become a great threat to global health. However, the last truly novel drug that was approved for the treatment of TB was discovered 40 years ago. The search for new effective drugs against TB has never been more intensive. Natural products derived from microbes and medicinal plants have been an important source of TB therapeutics. Recent advances have been made to accelerate the discovery rate of novel TB drugs including diversifying strategies for environmental strains, high-throughput screening (HTS) assays, and chemical diversity. This review will discuss the challenges of finding novel natural products with anti-TB activity from marine microbes and plant medicines, including biodiversity- and taxonomy-guided microbial natural products library construction, target- and cell-based HTS, and bioassay-directed isolation of anti-TB substances from traditional medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

Abbreviations

TB:

Tuberculosis

Mtb:

Mycobacterium tuberculosis

MDR-TB:

Multidrug-resistant Mycobacterium tuberculosis

XDR-TB:

Extensively drug-resistant TB

HIV:

Human immunodeficiency virus

NPL:

Natural products library

HTS:

High-throughput screening

PKS:

Polyketide synthases

NRPS:

Non-ribosomal peptide synthetases

ICL:

Isocitrate lyase

MS:

Malate synthase

BPL:

Biotin protein ligase

Fab:

Fatty acids biosynthase

MmpL:

Mycobacterial membrane protein, large

GyrB:

DNA gyrase subunit B

DHFR:

Dihydrofolate reductase

TMPK:

Thymidine monophosphate kinase

HRS:

High-resolution screening

ALIS:

Automated ligand identification system

rpsD:

Ribosomal protein small-subunit D

PtpA:

Protein tyrosine phosphatase A

References

  • Adams JD, Wall M, Garcia C (2005) Salvia columbariae contains tanshinones. Evid Based Comp Alt Med 2:107–110

    Article  Google Scholar 

  • Adams JD, Wang R, Yang J, Lien EJ (2006) Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions. Chin Med 1:3

    Article  PubMed  Google Scholar 

  • Arai M, Sobou M, Vicheze C, Baughn A, Hashizume H, Pruksakorn P, Ishida S, Matsumoto M, Jacobs WR Jr, Kobayashi M (2008) Halicyclamine A, a marine spongean alkaloid as a lead for anti-tuberculosis agent. Bioorgan Med Chem 16:6732–6736

    Article  CAS  Google Scholar 

  • Arnoldo A, Curak J, Kittanakom S, Chevelev I, Lee V, Sahebol-Amri M, Koscik B, Ljuma L, Roy PJ, Bedalov A, Giaever G, Nislow C, Merrill RA, Lory S, Stagljar I (2008) Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen. PLoS Genet 4:e1000005

    Article  PubMed  Google Scholar 

  • Ashforth EJ, Fu C, Liu X, Dai H, Song F, Guo H, Zhang L (2010) Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 27:1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Banskota AH, McAlpine JB, Sorensen D, Ibrahim A, Aouidate M, Piraee M, Alarco AM, Farnet CM, Zazopoulos E (2006) Genomic analyses lead to novel secondary metabolites. Part 3 ECO-0501, a novel antibacterial of a new class. J Antibiot 59:533–542

    Article  CAS  PubMed  Google Scholar 

  • Bobzin SC, Yang S, Kasten TP (2000) LC-NMR: a new tool to expedite the dereplication and identification of natural products. J Ind Microbiol Biotechnol 25:342–345

    Article  CAS  PubMed  Google Scholar 

  • Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46:219–252

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2006a) Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs-worldwide, 2000–2004. MMWR Morb Mortal Wkly Rep 55:301–305

    Google Scholar 

  • Centers for Disease Control and Prevention (2006b) Revised definition of extensively drug-resistant tuberculosis. MMWR Morb Mortal Wkly Rep 55:1176

    Google Scholar 

  • Changsen C, Franzblau SG, Palittapongarnpim P (2003) Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrob Agents Chemother 47:3682–3687

    Article  CAS  PubMed  Google Scholar 

  • Chin YW, Balunas MJ, Chai HB, Kinghorn AD (2006) Drug discovery from natural sources. AAPS J 8:E239–E253

    CAS  PubMed  Google Scholar 

  • Chopra P, Meena LS, Singh Y (2003) New drug targets for Mycobacterium tuberculosis. Indian J Med Res 117:1–9

    CAS  PubMed  Google Scholar 

  • Chopra S, Matsuyama K, Tran T, Malerich JP, Wan B, Franzblau SG, Lun S, Gu H, Maiga MC, Bishai WR, Madrid PB (2012) Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. Antimicrob Chemother 67:415–421

    Article  CAS  Google Scholar 

  • Corporation of Zhonghua Bencao (1998) Zhonghua Bencao. Science Publishing House, Shanghai, p 446

    Google Scholar 

  • Dhiman RK, Schaeffer ML, Bailey AM, Testa CA, Scherman H, Crick DC (2005) 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (Ispc) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin. J Bacteriol 187:8395–8402

    Article  CAS  PubMed  Google Scholar 

  • Duckworth BP, Geders TW, Tiwari D, Boshoff HI, Sibbald PA, Barry CE, Schnappinger D, Finzel BC, Aldrich CC (2011) Bisubstrate adenylation inhibitors of biotin protein ligase from Mycobacterium tuberculosis. Chem Biol 18:1432–1441

    Article  CAS  PubMed  Google Scholar 

  • Dunn MF, Ramirez-Trujillo JA, Hernandez-Lucas (2009) Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. J Microbiol 155:3166–3175

    Article  CAS  Google Scholar 

  • El-Taher TS, Matalka KZ, Taha HA, Badwan AA (2001) Ferula hermonis ‘zallouh’ and enhancing erectile function in rats: efficacy and toxicity study. Int J Impot Res 13:247–251

    Article  Google Scholar 

  • Freundlich JS, Lalgondar M, Wei JR, Swanson S, Sorensen EJ, Rubin EJ, Sacchettini JC (2010) The abyssomicin C family as in vitro inhibitors of Mycobacterium tuberculosis. Tuberculosis 90:298–300

    Article  CAS  PubMed  Google Scholar 

  • Fu CZ, Song FH, Guo H, Stanley S, Dai HQ, Chen HL, Hung D, Zhang LX (2009) Prospecting for anti-tuberculosis drugs from the natural products library. In: 15th international symposium on the biology of actinomycetes, Shanghai, China, 20–25 August, p 89

  • Goldberger MJ (1988) Antituberculous agents. Med Clin North Am 72:661–668

    CAS  PubMed  Google Scholar 

  • Gonzalez AG, Barrera JB (1995) Chemistry and sources of mono and bicyclic sesquiterpenes from Ferula species. Prog Chem Org Nat Prod 64:1–92

    CAS  Google Scholar 

  • Grzegorzewicz AE, Ha Pham, Gundi VAKB, Scherman MS, North EJ, Hess T, Jones V, Gruppo V, Born SEM, Kordulakova J, Chavadi SS, Morisseau C, Lenaerts AJ, Lee RE, McNeil MR, Jackson M (2012) Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 19:1–8

    Article  Google Scholar 

  • Gu JQ, Wang YH, Franzblau SG, Montenegro G, Timmermann BN (2006) Dereplication of pentacyclic triterpenoidls in plants by GC-EI/MS. Phytochem Anal 17:102–106

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Espinal M (2003) Stop TB Working Group on DOTSPlus for MDR-TB. A prioritized research agenda for DOTS-Plus for multidrug-resistant tuberculosis (MDR-TB). Int J Tuberc Lung Dis 7:410–414

    PubMed  Google Scholar 

  • Hadidi KA, Aburjai T, Battah AK (2003) A comparative study of Ferula hermonis root extracts and sildenafil on copulatory behaviour of male rats. Fitoterapia 74:242–246

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL (2007) Natural products as a screening resource. Curr Opin Chem Biol 11:480–484

    Article  CAS  PubMed  Google Scholar 

  • Henriksson LM, Unge T, Carlsson J, Aqvist J, Mowbray SL, Jones TA (2007) Structures of Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase provide new insights into catalysis. J Biol Chem 282:19905–19916

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Xiao PG (1989) HPTLC scanning determination of 6 flavonoids in 166 Rhododendron species. Acta Pharm Sin 24:923–931

    CAS  Google Scholar 

  • Ibraheim ZZ, Abdel-Mageed WM, Dai HQ, Guo H, Zhang LX, Jaspars M (2011) Antimicrobial antioxidant daucane sesquiterpenes from Ferula hermonis Boiss. Phytother Res. doi:10.1002/ptr.3609

  • Igarashi M, Nakagawa N, Doi N, Hattori S, Naganawa H, Hamada M (2003) Caprazamycin B, a novel anti-tuberculosis antibiotic, from Streptomyces sp. J Antibiot 56:580–583

    Article  PubMed  Google Scholar 

  • Iseman MD (1993) Treatment of multidrug-resistant tuberculosis. N Engl J Med 329:784–791

    Article  CAS  PubMed  Google Scholar 

  • Jacobs WR Jr, Kalscheuer R (2010) The significance of GlgE as a new target for tuberculosis. Drug News Perspect 23:619–624

    Article  PubMed  Google Scholar 

  • Jang SI, Jeong SI, Kim KJ, Yu HH, Park R, Kim HM, You YO (2003) Tanshinone IIA from Salvia miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-alpha, IL-1beta and IL-6 in activated RAW 264.7 cells. Planta Med 69:1057–1059

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Fenical W (1996) Marine bacterial diversity as a resource for novel microbial products. J Ind Microbiol Biotechnol 17:346–351

    Article  CAS  Google Scholar 

  • John G, Zink D, Basilio A, Vicente F, Bills G, Diez MT, Motyl M, Dezeny G, Byrne K, Singh SB (2007) Coniothyrione, a chlorocyclopentandienylbenzopyrone as a bacterial protein synthesis inhibitor discovered by antisense technology. J Nat Prod 70:668–670

    Article  Google Scholar 

  • Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KB, Liu Z, Sacchettini JC, Besra G, Bornemann S, Jacobs WR Jr (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway. Nat Chem Biol 6:376–384

    Article  CAS  PubMed  Google Scholar 

  • Konishi Y, Kiyota T, Draghici C, Gao JM, Yeboah F, Acoca S, Jarussophon S, Purisima E (2007) Molecular formula analysis by an MS/MS/MS technique to expedite dereplication of natural products. Anal Chem 79:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Koul A, Herget T, Klebl B, Ullrich A (2004) Interplay between Mycobacteria and host signaling pathways. Nat Rev Microbiol 2:189–202

    Article  CAS  PubMed  Google Scholar 

  • Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Vijayakrishnan R, Rao GS (2010) In silico structure-based design of a novel class of potent and selective small peptide inhibitor of Mycobacterium tuberculosis dihydrofolate reductase, a potential target for anti-TB drug discovery. Mol Divers 14:595–604

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Sharma S, Srinivasan A, Singh TP, Kaur P (2011) Structure-based in silico rational design of a selective peptide inhibitor for thymidine monophosphate kinase of Mycobacterium tuberculosis. J Mol Model 17:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • La Rosa V, Poce G, Canseco JO, Buroni S, Pasca MR, Biava M, Raju RM, Porretta GC, Alfonso S, Battilocchio C, Javid B, Sorrentino F, Loerger TR, Sacchettini JC, Manetti F, Botta M, De Logu A, Rubin EJ, De Rossi E (2012) MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212. Antimicrob Agents Chemother 56:324–331

    Article  PubMed  Google Scholar 

  • Lambert M, Staerk D, Hansen SH, Sairafianpour M, Jaroszewski JW (2005) Rapid extract dereplication using HPLC-SPE-NMR: analysis of isoflavonoids from Smirnowia iranica. J Nat Prod 68:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695

    Article  CAS  PubMed  Google Scholar 

  • Lev E, Amar Z (2002) Ethnopharmacological survey of drugs solid in Kingdom of Jordan. J Ethnopharmarmacol 82:131–145

    Article  Google Scholar 

  • Liu X, Bolla K, Ashforth EJ, Zhuo Y, Gao H, Huang P, Stanley SA, Hung DT, Zhang L (2012) Systematics-guided bioprospecting for bioactive microbial natural products. Antonie Van Leeuwenhoek 101:55–66

    Article  PubMed  Google Scholar 

  • Loerger TR, Sacchettini JC (2009) Structural genomics approach to drug discovery for Mycobacterium tuberculosis. Curr Opin Microbiol 12:318–325

    Article  Google Scholar 

  • Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662

    Article  CAS  PubMed  Google Scholar 

  • Luo HW, Zheng JR, Jiang BL, Xu LF (1982) The relationship between the RM value and biological activity of tanshinones. J Nanjing College Pharm 18:42–48

    Google Scholar 

  • Luo HW, Gao JW, Zheng JR (1988) Relationship between structure and antibacterial activities of tanshinones and related compounds. J Chin pharm Univ 19:258–262

    CAS  Google Scholar 

  • Mandell GL, Sande MA (1990) Antimicrobial agents. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) Goodman & Gilman’s the pharmacologic basis of therapeutics. Pergamon Press, New York, pp 1061–1062

  • Manger M, Scheck M, Prinz H, von Kries JP, Langer T, Saxena K, Schwalbe H, Furstner A, Rademann J, Waldmann H (2005) Discovery of Mycobacterium tuberculosis protein tyrosine phosphatase A (MptpA) inhibitors based on natural products and a fragment-based approach. Chem Bio Chem 6:1749–1753

    CAS  PubMed  Google Scholar 

  • McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR WR Jr, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738

    Article  CAS  PubMed  Google Scholar 

  • Mdluli K, Ma ZK (2007) Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect Disord Drug Target 7:159–168

    Article  CAS  Google Scholar 

  • Medical Research Council (1948) Streptomycin treatment of pulmonary tuberculosis. Medical Research Council investigation. Br Med J 2:769–782

    Article  Google Scholar 

  • Medical Research Council (1950) Treatment of pulmonary tuberculosis with streptomycin and para-aminosalicylic acid. Medical Research Council investigation. Br Med J 2:1073–1086

    Article  Google Scholar 

  • Meena LS, Rajni (2010) Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS 277:2416–2427

    Article  CAS  Google Scholar 

  • Mukherjee D, Kumar NS, Khatua T, Mukherjee PK (2010) Rapid validated HPTLC method for estimation of betulinic acid in Nelumbo nucifera (Nymphaeaceae) rhizome extract. Phytochem Anal 21:556–560

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Krick A, Keluraus S (2006) Brunsvicamides A–C: sponge related cyanobacterial peptides with Mycobacterium tuberculosis protein tyrosine phosphatase inhibitory activity. J Med Chem 49:4871–4878

    Article  PubMed  Google Scholar 

  • Ouyang Y, Wu H, Xie L, Wang G, Dai S, Chen M, Yang KQ, Li X (2011) A method to type the potential augucycline producers in actinomycetes isolated from marine sponges. Antonie Van Leeuwenhoek 99:807–815

    Article  PubMed  Google Scholar 

  • Parish CA, de la Cruz M, Smith SK, Zink D, Baxter J, Tucker-Samaras S, Collado J, Platas G, Bills G, Diez MT, Vicente F, Pelaez F, Wilson K (2009) Antisense-guided isolation and structure elucidation of pannomycin, a substituted cis-decalin from Geomyces pannorum. J Nat Prod 72:59–62

    Article  CAS  PubMed  Google Scholar 

  • Pauli GF, Case RJ, Inui T, Wang Y, Cho S, Fischer NH, Franzblau SG (2005) New perspectives on natural products in TB drug research. Life Sci 78:485–494

    Article  CAS  PubMed  Google Scholar 

  • Payne DJ, Miller WH, Berry V, Brosky J, Burgess WJ, Chen E, DeWolf WE Jr, Fosberry AP, Greenwood R, Head MS, Heerding DA, Janson CA, Jaworski DD, Keller PM, Manley PJ, Moore TD, Newlander KA, Pearson S, Polizzi BJ, Qiu X, Rittenhouse SF, Slater-Radosti C, Salyer KL, Seefeld MA, Smyth MG, Takata DT, Uzinskas IN, Vaidya K, Wallis NG, Winram SB, Yuan CCK, Huffman WF (2002) Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob Agents Chemother 46:3118–3124

    Article  CAS  PubMed  Google Scholar 

  • Penesyan A, Kjelleberg S, Egan S (2010) Development of novel drugs from marine surface associated microorganisms. Mar Drugs 8:438–459

    Article  CAS  PubMed  Google Scholar 

  • Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR Jr, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663

    Article  CAS  PubMed  Google Scholar 

  • Purushothaman S, Gupta G, Srivastava R, Ramu VG, Surolia A (2008) Ligand specificity of group I biotin protein ligase of Mycobacterium tuberculosis. PLoS One 3:1–12

    Article  Google Scholar 

  • Pyle MM (1947) Relative numbers of resistant tubercle bacilli in sputa of patients before and during treatment with streptomycin. Proc Staff Meet Mayo Clin 22:465–472

    CAS  PubMed  Google Scholar 

  • Rateb ME, Houssen WE, Harrison WTA, Deng H, Okoro CK, Asenjo JA, Andrews BA, Bull AT, Goodfellow M, Ebel R, Jaspars M (2011) Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod 74:1965–1971

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez AD, Ramirez C, Rodriguez II, Gonzalez E (1999) Novel antimycobacterial benzoxazole alkaloids, from the west Indian sea whip Pseudopterogorgia elisabethae. Org Lett 1:527–530

    Article  CAS  PubMed  Google Scholar 

  • Ryu SY, Lee CO, Choi SU (1997) In vitro cytotoxicity of tanshinones from Salvia miltiorrhiza. Planta Med 63:339–342

    Article  CAS  PubMed  Google Scholar 

  • Said O, Khalil K, Fulder S, Azaizeh M (2002) Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J Ethnopharmarmacol 83:251–265

    Article  CAS  Google Scholar 

  • Sayed KAE, Bartyzel P, Shen X, Perry TL, Zjawiony JK, Hamann MT (2000) Marine natural products as antituberculosis agents. Tetrahedron 56:949–953

    Article  Google Scholar 

  • Shawar RM, Humble DJ, Van Dalfsen JM, Stover CK, Hickey MJ, Steele S, Mitscher LA, Baker W (1997) Rapid screening of natural products for anti-mycobacterial activity by using luciferase-expressing strains of Mycobacterium bovis BCG and Mycobacterium intracellulare. Antimicrob Agents Chemother 41:570–574

    CAS  PubMed  Google Scholar 

  • Singh R, Rao V, Shakila H, Gupta R, Khera A, Dhar N, Singh A, Koul A, Singh Y, Naseema M, Narayanan PR, Paramasivan CN, Ramanathan VD, Tyagi AK (2005) Disruption of mptpB impairw the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol 50:751–762

    Article  Google Scholar 

  • Singh SB, Jayasuriya H, Ondekyka JG, Herath KB, Zhang C, Zink DL, Tsou NN, Ball RG, Basilio A, Genilloud O, Diez MT, Vicente F, Pelaez F, Young K, Wang J (2006) Isolation, structure and absolute stereochemistry of platensimycin, a broad spectrum antibiotic discovered using an antisense differential sensitivity strategy. J Am Chem Soc 128:11916–11920

    Article  CAS  PubMed  Google Scholar 

  • Smith CV, Sharma V, Sacchettini JC (2004) TB drug discovery: addressing issues of persistence and resistance. Tuberculosis (Edinb) 84:45–55

    Article  Google Scholar 

  • Soares da Costa TP, Tieu W, Yap MY, Pendini NR, Polyak SW, Pedersen DS, Morona R, Turnidge JD, Wallace JC, Wilce MCJ, Booker GW, Abell AD (2012) Selective inhibition of biotin protein ligase from Staphylococcus aureus. J Biol Chem 287(21):17823–17832

    Article  CAS  PubMed  Google Scholar 

  • Song F, Dai H, Tong Y, Ren B, Chen C, Sun N, Liu X, Bian J, Liu M, Gao H, Liu H, Chen X, Zhang L (2010) Trichodermaketones A–D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii. J Nat Prod 73:806–810

    Article  CAS  PubMed  Google Scholar 

  • Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW, Walker JR, Alland D, Barry CE, Boshoff HI (2012) Antimicrob.SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:1797–1809

    Article  CAS  PubMed  Google Scholar 

  • Velho-Pereira RM, Barhate CR, Kulkarni SR, Jagtap AG (2011) Validated high-performance thin-layer chromatographic method for the quantification of thymoquinone in Nigella Sativa extracts and formulations. Phytochem Anal 22:367–373

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Kodali S, Lee SH, Galgoci A, Painter R, Dorso K, Racine F, Motyl M, Hernandez L, Tinney E, Colletti S, Herath K, Cummings R, Salazar O, Gonzalez I, Basilio A, Vicente F, Genilloud O, Pelaez F, Jayasuriya H, Young K, Cully DF, Singh SB (2007a) Discovery of platencin, a FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 104:7612–7616

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Morris-Natschke SL, Lee KH (2007b) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27:133–148

    Article  PubMed  Google Scholar 

  • Wang JF, Dai HQ, Wei YL, Zhu HJ, Yan YM, Wang YH, Long CL, Zhong HM, Zhang LX, Cheng YX (2010) Antituberculosis agents and an inhibitor of the para-aminobenzoic acid biosynthetic pathway from Hydnocarpus anthelminthica seeds. Chem Biodivers 7:2046–2053

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2011) Global tuberculosis control, WHO

  • Wu WL, Chang WL, Chen CF (1991) Cytotoxic activities of tanshinones against human carcinoma cell lines. J Chin Med 19:207–216

    Article  Google Scholar 

  • Xie YY, Chen RX, Si SY, Sun CH, Xu HZ (2007) A new nucleosidyl-peptide antibiotic, sansanmycin. J Antibiot 60:158–161

    Article  CAS  PubMed  Google Scholar 

  • Xie YY, Xu HZ, Si SY, Sun CH, Chen RX (2008) Sansanmycins B and C, new components of sansanmycins. J Antibiot 61:237–240

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Luo H (1998) Modification of diterpenoid quinone s from Salvia miltiorrhiza. J Chin Pharm Univ 29:255–258

    CAS  Google Scholar 

  • Youmans GP, Williston EH, Feldman WH, Hinshaw HC (1946) Increase in resistance of tubercle bacilli to streptomycin: a preliminary report. Proc Staff Meet Mayo Clin 21:126–127

    CAS  PubMed  Google Scholar 

  • Yum JH, Kim CK, Yong D, Lee K, Chong Y, Kim CM, Kim JM, Ro S, Cho JM (2007) In vitro activities of CG400549, a novel FabI inhibitor, against recently isolated clinical Staphylococcal strains in Korea. Antimicrob Agents Chemother 51:2591–2593

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yan K, Zhang Y, Huang R, Bian J, Zheng C, Sun H, Chen Z, Sun N, An R, Min F, Zhao W, Zhuo Y, You J, Song Y, Yu Z, Liu Z, Yang K, Gao H, Dai H, Zhang X, Wang J, Fu C, Pei G, Liu J, Zhang S, Goodfellow M, Jiang Y, Kuai J, Zhou G, Chen X (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci USA 104:4606–4611

    Article  CAS  PubMed  Google Scholar 

  • Zhuo Y, Zhang W, Chen D, Gao H, Tao J, Liu M, Gou Z, Zhou X, Ye BC, Zhang Q, Zhang S, Zhang LX (2010) Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc Natl Acad Sci USA 107:11250–11254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this work was performed under research collaboration between the Global Alliance for TB Drug Development (TB Alliance) and the Institute of Microbiology of the Chinese Academy of Sciences (IMCAS). We acknowledge Drs. Zhenkun Ma, Anna Upton, and Christopher B. Cooper from the TB Alliance for their scientific input during the performance of this work. One of the authors, Krishna Bolla is thankful to TWAS & CAS for the financial support. This work was supported in part by grants from National Natural Science Foundation of China (81102369, 30911120483, 81102356, 30901849, 30973665, 30911120484), the CAS Pillar Program (XDA04074000) and the Ministry of Science and Technology of China (2011ZX11102-011-11, 2007DFB31620). LZ is an Awardee for National Distinguished Young Scholar Program in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhang.

Additional information

Xueting Liu and Caixia Chen have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Chen, C., He, W. et al. Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. Antonie van Leeuwenhoek 102, 447–461 (2012). https://doi.org/10.1007/s10482-012-9777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9777-0

Keywords

Navigation