Skip to main content
Log in

Marine bacterial diversity as a resource for novel microbial products

  • Published:
Journal of Industrial Microbiology

Abstract

Marine bacteria are an important and relatively unexplored resource for novel microbial products. In this review, we discuss a number of issues relevant to the industrial potential of marine microorganisms including how marine and terrestrial bacteria differ, both physiologically and taxonomically, and what constitute reasonable expectations of the biosynthetic capabilities of marine bacteria relative to terrestrial bacteria and to marine macroorganisms. Also discussed is the concept that bacterial associations with marine plants and animals, which range from casual encounters to obligate symbioses, provide unique opportunities for bacterial adaptation. It is proposed that some of these adaptations would not be selected for in the absence of environmental parameters associated with the host, and that these adaptations can include the biosynthesis of unique metabolic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balows A, HG Trüper, M Dworkin, W Harder and K Schleifer. 1992. The Procaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd edn, Vols I–IV, Springer-Verlag, New York.

    Google Scholar 

  2. Bell W and R Mitchell. 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143: 265–277.

    Google Scholar 

  3. Berdy J. 1989. The discovery of new bioactive microbial metabolites: screening and identification. In: Bioactive Metabolites from Microorganisms, Progress in Microbiology, Vol 27 (Bushell ME and U Gräfe, eds), pp 3–25, Elsevier, Amsterdam.

    Google Scholar 

  4. Borowitzka M. 1982. Morphological and cytological aspects of algal calcification. Int Rev Cytol 74: 127–162.

    Google Scholar 

  5. Bull AT, M Goodfellow and JH Slater. 1992. Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46: 219–252.

    PubMed  Google Scholar 

  6. Colwell RR, RA Clayton, BA Oritz-Conde, D Jacobs and E Russek-Cohen. 1995. The microbial species concept and biodiversity. In: Microbial Diversity and Ecosystem Function (Allsopp D, RR Colwell and DL Hawksworth, eds), pp 3–15, CAB International, Wallingford, UK.

    Google Scholar 

  7. Cross T. 1981. Aquatic actinomycetes: a critical survey of the occurrence, growth and role of actinomycetes in aquatic habitats. J Appl Bacteriol 50: 397–423.

    PubMed  Google Scholar 

  8. Davidson BS. 1995. New dimensions in natural products research: cultured marine microorganisms. Curr Biol 6: 284–291.

    Google Scholar 

  9. Distel DL, DJ Lane, GJ Olsen, SJ Giovannoni, B Pace, NR Pace, DA Stahl and H Felbeck. 1988. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170: 2506–2510.

    PubMed  Google Scholar 

  10. Dworkin M. 1992. Prokaryotic diversity. In: The Prokaryotes (Starr MP, H Stolp, HG Trüper, A Balows and HG Schlegel, eds), Vol 1, pp 48–74, Springer-Verlag, Berlin.

    Google Scholar 

  11. Faulkner DJ. 1996. Marine natural products. Nat Prod Reports 13: 75–125.

    Google Scholar 

  12. Fenical W. 1993. Chemical studies of marine bacteria. Chem Rev 93: 1673–1683.

    Google Scholar 

  13. Fenical W and PR Jensen. Marine microorganisms: a new biomedical resource. In: Marine Biotechnology, Vol 1, Pharmaccutical and Bioactive Natural Products (Zaborsky OK and DA Attaway, eds), pp 419–457, Plenum Press, New York.

  14. Fuhrman JA, K McCallum and AA Davis. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59: 1294–1302.

    PubMed  Google Scholar 

  15. Giovannoni SJ, TB Britschgi, CL Moyer and KG Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    PubMed  Google Scholar 

  16. Goodfellow M and JA Haynes. 1984. Actinomycetes in marine sediments. In: Biological, Biochemical, and Biomedical Aspects of Actinomycetes (Ortiz-Ortiz L, LF Bojalil and V Yakoleff, eds), pp 453–472, Academic Press, Orlando.

    Google Scholar 

  17. Haygood MG. 1993. Light organ symbioses in fishes. Crit Rev Microbiol 19: 191–216.

    PubMed  Google Scholar 

  18. Helmke E and H Weyland. 1984.Rhodococcus marinonascens sp nov, an actinomycete from the sea. Int J Syst Bacteriol 34: 127–138.

    Google Scholar 

  19. Jensen PR, R Dwight and W Fenical. 1991. Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol 57: 1102–1108.

    PubMed  Google Scholar 

  20. Jensen PR and W Fenical. 1994. Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48: 559–584.

    PubMed  Google Scholar 

  21. Jensen PR, C Kauffman and W Fenical. High recovery of culturable bacteria from the surfaces of two species of marine algae. Mar Biol (in press).

  22. Kita-Tsukamoto K, H Oyaizu, K Nanba and U Simidu. 1993. Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int J Syst Bacteriol 43: 8–19.

    PubMed  Google Scholar 

  23. Kobayashi J and M Ishibashi. 1993. Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93: 1753–1769.

    Google Scholar 

  24. Lewis TE, CD Garland and TA McMeekin. 1985. The bacterial biota on crustose (nonarticulated) coralline algae from Tasmanian waters. Microb Ecol 11: 221–230.

    Google Scholar 

  25. MacLeod RA and E Onofrey. 1956. Nutrition and metabolism of marine bacteria. II. Observations on the relation of seawater to the growth of marine bacteria. J Bacteriol 71: 661–667.

    PubMed  Google Scholar 

  26. Margulis L and R Fester (eds). Symbiosis as a Source of Evolutionary Innovation. MIT Press, Cambridge, 454 pp.

  27. May RM. 1994. Biological diversity: differences between land and sea. Phil Trans R Soc Lond B 343: 105–111.

    Google Scholar 

  28. Moran MA, LT Rutherford and RE Hodson. 1995. Evidence for indigenousStreptomyces populations in a marine environment determined with a 16S rRNA probe. Appl Environ Microbiol 61: 3695–3700.

    PubMed  Google Scholar 

  29. Needham J, MT Kelly, M Ishige and R Andersen. 1994. Andrimid and moiramides A to C, metabolites produced in culture by a marine isolate of the bacteriumPseudomonas fluorescens: structure elucidation and biosynthesis. J Org Chem 59: 2058–2063.

    Google Scholar 

  30. Oclarit JM, S Ohta, K Kamimura, Y Yamaoka, T Shimizu and S Ikegami. 1994. A novel antimicrobial substance from a strain of the bacteriumVibrio sp. Nat Prod Lett 4: 309–312.

    Google Scholar 

  31. Okami Y. 1993. The search for bioactive metabolites from marine bacteria. J Mar Biotech 1: 59–65.

    Google Scholar 

  32. Okazaki T and Y Okami. 1975. Actinomycetes tolerant to increased NaCl concentration and their metabolites. J Ferment Technol 53: 833–840.

    Google Scholar 

  33. Paul VJ (ed). 1992. Ecological Roles of Marine Natural Products. Comstock Publishing Assoc, Ithaca, 254 pp.

    Google Scholar 

  34. Reid RT, DH Live, DJ Faulkner and A Butler. 1993. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366: 455–458.

    PubMed  Google Scholar 

  35. Stoecker D. 1980. Relationships between chemical defense and ecology in benthic ascidians. Mar Ecol Prog Ser 3: 257–265.

    Google Scholar 

  36. Takahashi C, T Takada, Y Yamada, K Minoura, K Uchida, E Matsumura and K Numata. 1994. Halichomycin, a new class of potent cutotoxic macrolide produced by an actinomycete from a marine fish. Tetrahedron Lett 35: 5013–5014.

    Google Scholar 

  37. Thompson JE. 1985. Exudation of biologically-active metabolites in the spongeAplysina fistularis. I. Biological evidence. Mar Biol 88: 23–26.

    Google Scholar 

  38. Tresner HD, JA Hayes and EJ Backus. 1968. Differential tolerance of streptomycetes to sodium chloride as a taxonomic aid. Appl Microbiol 16: 1134–1136.

    PubMed  Google Scholar 

  39. Trischman J, PR Jensen and W Fenical. 1994. Halobacillin: a cytotoxic cyclic acylpeptide of the iturin class produced by a marineBacillus. Tetrahedron Lett 35: 5571–5574.

    Google Scholar 

  40. Trüper HG. 1992. Prokaryotes: an overview with respect to biodiversity and environmental importance. Biodiversity and Convervation 1: 227–236.

    Google Scholar 

  41. Wahl M, PR Jensen and W Fenical. 1994. Chemical control of bacterial epibiosis on ascidians. Mar Ecol Prog Ser 110: 45–57.

    Google Scholar 

  42. Wilkinson CR. 1978. Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49: 169–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, P.R., Fenical, W. Marine bacterial diversity as a resource for novel microbial products. Journal of Industrial Microbiology & Biotechnology 17, 346–351 (1996). https://doi.org/10.1007/BF01574765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574765

Keywords

Navigation