Skip to main content
Log in

Desulfosoma profundi sp. nov., a thermophilic sulfate-reducing bacterium isolated from a deep terrestrial geothermal spring in France

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel strictly anaerobic bacterium designated SPDX02-08T was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1–2 × 2–6 μm) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08T grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08T completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08T required yeast extract to oxidize formate and H2 but did not grow autotrophically on H2. Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08T were iso-C15:0, C15:0, and C16:0. Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08T belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08T and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08T is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937T = JCM 16410T). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08T is HM056226.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baena S, Perdomo N, Carvajal C, Diaz C, Patel BKC (2011) Desulfosoma caldarium gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from an Andean terrestrial hot spring. Int J Syst Evol Microbiol 61:732–736

    Article  PubMed  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Mol Biol Rev 43:260–296

    CAS  Google Scholar 

  • Beeder J, Torsvik T, Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17

    Article  PubMed  CAS  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacterial. J Microbiol Methods 4:33–36

    Article  CAS  Google Scholar 

  • Daumas S, Cord-Ruwisch R, Garcia JL (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek 54:165–178

    Article  PubMed  CAS  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Escara JF, Hutton JR (1980) Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327

    Article  PubMed  CAS  Google Scholar 

  • Fardeau M-L, Cayol J-L, Magot M, Ollivier B (1993) H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 13:327–332

    Article  Google Scholar 

  • Fardeau M-L, Ollivier B, Patel BKC, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia J-L (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Fardeau ML, Magot M, Patel BKC, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Meth Microbiol 3B. Academic Press, New York, pp 117–132

    Google Scholar 

  • Huß VAR, Festel H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  Google Scholar 

  • Imhoff-Stuckle D, Pfennig N (1983) Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136:194–198

    Article  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

    Google Scholar 

  • Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological-characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208

    Article  CAS  Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2005) Syntrophobacteraceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, Vol 2-Part C, 2nd edn. Springer, New York, pp 1021–1040

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, London, pp 115–175

    Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Postgate J (1959) A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183:481–482

    Article  PubMed  CAS  Google Scholar 

  • Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89

    Article  Google Scholar 

  • Rozanova EP, Tourova TP, Kolganova TV, Lysenko AM, Mityushina LL, Yusupov SK, Belyaev SS (2001) Desulfacinum subterraneum sp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology 70:466–471

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sievert SM, Kuever J (2000) Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50:1239–1246

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Stackebrandt E, Tohyama S, Eguchi T (2000) Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, Gram-negative, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:639–644

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, De Wachter R (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230

    PubMed  Google Scholar 

  • Widdel F, Pfennig N (1977) A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112:119–122

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Kohring G-W, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov. and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from AFRETH and Institut du Thermalisme – Université Victor Segalen Bordeaux 2. Many thanks to Dr Anne C. Frazer (Plant and Microbial Biology Department, University of California of Berkeley) for improving the manuscript, to the Mayor of Saint-Paul-Lès-Dax for having given us access to the hot spring and to Dr J. P. Euzéby for checking the etymology of the species name.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ollivier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grégoire, P., Fardeau, ML., Guasco, S. et al. Desulfosoma profundi sp. nov., a thermophilic sulfate-reducing bacterium isolated from a deep terrestrial geothermal spring in France. Antonie van Leeuwenhoek 101, 595–602 (2012). https://doi.org/10.1007/s10482-011-9675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9675-x

Keywords

Navigation