Skip to main content
Log in

Actinobacteria isolated from termite guts as a source of novel oxidative enzymes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A multi-faceted screening programme was designed to search for the oxidases, laccase, peroxidase and tyrosinase. Actinobacteria were selectively isolated from the paunch and colon region of the hindguts of the higher termite, Amitermes hastatus. The isolates were subjected to solid media assays (dye decolourization, melanin production and the utilization of indulin AT as sole carbon source) and liquid media assays. Eleven of the 39 strains had the ability to decolourize the dye RBBR, an indicator for the production of peroxidases in actinobacteria. Melanin production on ISP6 and ISP7 agar plates served as a good indicator for laccase and/or tyrosinase production and the ability of the strains to grow in the presence of indulin AT as a sole carbon source served as a good indicator of lignin peroxidase and/or general peroxidase production. Enzyme-producing strains were cultivated in liquid media and extracellular enzyme activities measured. Strains with the ability to produce oxidative enzymes under the conditions tested were identified to genus level by 16S rRNA gene analysis and compared to known oxidase producers. A strong relationship was observed between the environment sampled (termite guts where lignocellulose degradation occurs) and the dominant type of oxidative enzyme activity detected (laccases and peroxidases), which suggests the possibility of future targeted screening protocols linking the physical properties of the target enzymes with specific operational conditions required, such as lignocellulosic degradation in the preparation of biofuel feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antonopoulous VT, Hernández M, Arias ME, Mavrakos E, Ball AS (2001) The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of eucalyptus kraft pulp. Appl Microbiol Biotechnol 57:92–97

    Article  Google Scholar 

  • Arai T, Mikami Y (1972) Chromogenesis mirabilis in Streptomyces griseus. Appl Microbiol 24:768–771

    PubMed  CAS  Google Scholar 

  • Arenskötter M, Bröker D, Steinbuchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204

    Article  PubMed  Google Scholar 

  • Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958

    Article  PubMed  CAS  Google Scholar 

  • Atack JM, Kelly DJ (2009) Oxidative stress in Campylobacter jejuni: responses, resistance and regulation. Future Microbiol 4:677–690

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (2004) Handbook of microbiological media, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Azmi W, Sani RK, Banerjee UC (1998) Biodegradation of triphenylmethane dyes. Enzyme Microb Technol 22:185–191

    Article  PubMed  CAS  Google Scholar 

  • Ball AS, Godden B, Helvenstein P, Penninckx MJ, McCarthy AJ (1990) Lignocarbohydrate solubilization from straw by actinomycetes. Appl Environ Microbiol 56:3017–3022

    PubMed  CAS  Google Scholar 

  • Banci L (1997) Structural properties of peroxidases. J Biotechnol 53:253–263

    Article  PubMed  CAS  Google Scholar 

  • Beis SH, Mukkamala S, Hill N, Joseph J, Baker C, Jensen B, Stemmler EA, Wheeler MC, Frederick BG, van Heiningen A, Berg AG, DeSisto WJ (2010) Fast pyrolysis of lignins. BioResources 5:1408–1424

    CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role of laccase in lignin biodegradation. FEBS J 267:99–102

    Article  CAS  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  PubMed  CAS  Google Scholar 

  • Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549

    Article  PubMed  CAS  Google Scholar 

  • Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20:37–45

    Article  PubMed  CAS  Google Scholar 

  • Carunchio F, Crescenzi C, Girelli AM, Messina A, Tarola AM (2001) Oxidation of ferulic acid by laccase: identification of the products and inhibitory effects of some dipeptides. Talanta 55:189–200

    Article  PubMed  CAS  Google Scholar 

  • Cazemier AE, Verdoes JC, Reubsaet FAG, Hackstein JHP, van der Drift C, Op den Camp HJM (2003) Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek 83:135–148

    Article  PubMed  CAS  Google Scholar 

  • Chandra R, Singh S, Reddy MMK, Patel DK, Purohit HJ, Kapley A (2008) Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste. J Gen Appl Microbiol 54:399–407

    Article  PubMed  CAS  Google Scholar 

  • Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29:3–14

    Article  PubMed  CAS  Google Scholar 

  • Claus H, Faber G, König H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR (1997) Microbial diversity: the importance of exploration and conservation. J Ind Microbiol Biotechnol 18:302–307

    Article  PubMed  CAS  Google Scholar 

  • Cook AE, Meyers PR (2003) Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53:1907–1915

    Article  PubMed  CAS  Google Scholar 

  • Coy MR, Salem TZ, Denton JS, Kovaleva E, Liu Z, Barber DS, Campbell JH, Davis DC, Buchman GW, Boucias DG, Scharf ME (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol. doi:10.1016/j.ibmb.2010.07.004

  • Donadio S, Monciardini P, Alduina R, Mazza P, Chiocchini C, Cavaletti L, Sosio M, Puglia AM (2002) Microbial technologies for the discovery of novel bioactive metabolites. J Biotechnol 99:187–198

    Article  PubMed  CAS  Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson K-EL (1995) Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett 376:202–206

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677

    Article  PubMed  CAS  Google Scholar 

  • Ferrar P (1982) Termites of a South African Savanna. I. List of species and subhabitat preferences. Oecologia 52:125–132

    Article  Google Scholar 

  • Giroux H, Vidal P, Bouchard J, Lamy F (1988) Degradation of kraft lignin by Streptomyces viridosporus and Streptomyces badius. Appl Environ Microbiol 54:3064–3070

    PubMed  CAS  Google Scholar 

  • Gottlieb D (1973) General consideration and implications of the Actinomycetales. In: Sykes G, Skinner FA (eds) Actinomycetales: characteristics and practical importance. Academic Press Inc., London, pp 1–10

    Google Scholar 

  • Gottschalk LMF, Bon EPS, Nobrega R (2008) Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration. Appl Biochem Biotechnol 147:23–32

    Article  PubMed  CAS  Google Scholar 

  • Graf E, Schneider K, Nicholson G, Ströbele M, Jones AL, Goodfellow M, Beil W, Süssmuth RD, Fiedler H-P (2007) Elloxazinones A and B, new aminophenoxazinones from Streptomyces griseus Acta 2871. J Antibiot 60:277–284

    Article  PubMed  CAS  Google Scholar 

  • Guerra-Lopez D, Daniels L, Rawat M (2007) Mycobacterium smegmatis mc2 155 fbiC and MSMEG_2392 are involved in triphenylmethane dye decolourization and coenzyme F420 biosynthesis. Microbiology 153:2724–2732

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa M (2008) Studies on the isolation and distribution of rare actinomycetes in soil. Nippon Hosenkin Gakkaishi 22:12–19

    Google Scholar 

  • Hernández M, Rodríguez J, Soliveri J, Copa JL, Pérez MI, Arias ME (1994) Paper mill effluent decolorization by fifty Streptomyces strains. Appl Environ Microbiol 60:3909–3913

    PubMed  Google Scholar 

  • Hopwood D (2007) An introduction to the actinobacteria. Microbiol Today May:60–62

  • Ito M, Oda K (2000) An organic solvent resistant tyrosinase from Streptomyces sp. REN-21: purification and characterization. Biosci Biotechnol Biochem 64:261–267

    Article  PubMed  CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Laccase activity tests and laccase inhibitors. J Biotechnol 78:193–199

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    PubMed  CAS  Google Scholar 

  • Kirby R (2006) Actinomycetes and lignin degradation. Adv Appl Microbiol 58:125–168

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci 28:1015–1048

    Article  CAS  Google Scholar 

  • Korus RA, Lodha SJ, Adhi TP, Crawford DL (1991) Kinetics of peroxidase production by Streptomyces viridosporous and recombinant Streptomyces lividans. Biotechnol Prog 7:510–515

    Article  CAS  Google Scholar 

  • Le Roes-Hill M, Goodwin CM, Burton SG (2009) Review paper. Phenoxazinone synthase: What’s in a name? Trends Biotechnol 27:248–258

    Article  PubMed  Google Scholar 

  • Le Roes-Hill M, Khan N, Burton SG (2011) Review paper. Actinobacterial peroxidases: an unexplored resource for biocatalysis. Appl Biochem Biotechnol 164:681–713

    Article  PubMed  CAS  Google Scholar 

  • Lerch K, Ettlinger L (1972) Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur J Biochem 31:427–437

    Article  PubMed  CAS  Google Scholar 

  • Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60:367–376

    Article  PubMed  CAS  Google Scholar 

  • May SW (1999) Applications of oxidoreductases. Biotechnology 10:370–375

    CAS  Google Scholar 

  • McMullan G, Meehan C, Connely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  PubMed  CAS  Google Scholar 

  • Mercer DK, Iqbal M, Miller PGG, McCarthy AJ (1996) Screening actinomycetes for extracellular peroxidase activity. Appl Environ Microbiol 62:2186–2190

    PubMed  CAS  Google Scholar 

  • Molina-Guijarro JM, Pérez J, Muñoz-Dorado J, Guillén F, Moya R, Hernández M, Arias ME (2009) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12:13–21

    PubMed  CAS  Google Scholar 

  • Moncheva P, Tishkov S, Dimitrova N, Chipeva V, Antonova-Nikolova S, Bogatzevska N (2002) Characteristics of soil actinomycetes from Antarctica. J Cult Collect 3:3–14

    Google Scholar 

  • Ncanana S, Burton S (2007) Oxidation of 8-hydroxyquinoline catalyzed by laccase from Trametes pubescens yields an antioxidant aromatic polymer. J Mol Catal B Enzym 44:66–71

    Article  CAS  Google Scholar 

  • Niedermeyer THJ, Mikolasch A, Lalk M (2005) Nuclear amination catalyzed by fungal laccases: reaction products of p-hydroquinones and primary amines. J Org Chem 70:2002–2008

    Article  PubMed  CAS  Google Scholar 

  • Niladevi KN, Prema P (2005) Mangrove actinomycetes as the source of ligninolytic enzymes. Nippon Hosenkin Gakkaishi 19:40–47

    CAS  Google Scholar 

  • Nishimura M, Ooi O, Davies J (2006) Isolation and characterization of Streptomyces sp. NL15-2K capable of degrading lignin-related aromatic compounds. J Biosci Bioeng 102:124–127

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocelluloses. Appl Microbiol Biotechnol 61:1–9

    PubMed  CAS  Google Scholar 

  • Orenes-Piñero E, García-Carmona F, Sánchez-Ferrer A (2005) A kinetic study of p-cresol oxidation by quince fruit polyphenol oxidase. J Agric Food Chem 53:1196–1200

    Article  PubMed  Google Scholar 

  • Ozeki M, Isagi Y, Tsubota H, Jacklyn P, Bowman DMJS (2007) Phylogeography of an Australian termite, Amitermes laurensis (Isoptera, Termitidae), with special reference to the variety of mound shapes. Mol Phylogenet Evol 42:236–247

    Article  PubMed  CAS  Google Scholar 

  • Pasti MB, Belli ML (1985) Cellulolytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol Lett 26:107–112

    Article  CAS  Google Scholar 

  • Pasti MB, Pometto AL III, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56:2213–2218

    PubMed  CAS  Google Scholar 

  • Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613

    PubMed  CAS  Google Scholar 

  • Pasti-Grigsby MB, Burke NS, Goszczynski S, Crawford DL (1996) Transformation of Azo Dye Isomers by Streptomyces chromofuscus A11. Appl Environ Microbiol 62:1814–1817

    PubMed  CAS  Google Scholar 

  • Picker M, Griffiths C, Weaving A (2002) In: Hromnik J (ed) Field guide to insects of South Africa. Struik Publishers, Cape Town

    Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 30:19–24

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons and their derivatives catalyzed directly by the yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 41:8–15

    Article  CAS  Google Scholar 

  • Raj A, Reddy MMK, Chandra R, Purohit HJ, Kapley A (2007) Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 18:783–792

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra M, Crawford DL, Pometto AL III (1987) Exctracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: a comparative study of wild-type and genetically manipulated strains. Appl Environ Microbiol 53:2754–2760

    PubMed  CAS  Google Scholar 

  • Ride JP (1980) The effect of induced lignification on the resistance of wheat cell walls to fungal degradation. Physiol Plant Pathol 16:187–196

    Article  CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  PubMed  CAS  Google Scholar 

  • Rohland J (2010) Investigating the actinomycete diversity inside the hindgut of an indigenous termite, Microhodotermes viator. PhD thesis. Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sani RK, Banerjee UC (1999) Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microb Technol 24:433–437

    Article  CAS  Google Scholar 

  • Shimokawa T, Shoda M, Sugano Y (2009) Purification and characterization of two DyP isozymes from Thanatephorus cucumeris Dec 1 specifically expressed in air-membrane surface reactor. J Biosci Bioeng 107:113–115

    Article  PubMed  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterisation of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Solano F, Lucas-Elio P, López-Serrano D, Fernández E, Sanchez-Amat A (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 204:175–181

    Article  PubMed  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  PubMed  CAS  Google Scholar 

  • Sugano Y (2009) DyP-type peroxidases comprise a novel haem peroxidase family. Cell Mol Life Sci 66:1387–1403

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Furusho Y, Higashi T, Ohnishi Y, Horinouchi S (2006) A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone. J Biol Chem 281:824–833

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Nei M (2000) Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 17:1251–1258

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tansey MR, Murrmann DN, Behnke BK, Behnke ER (1977) Enrichment, isolation and assay of growth of thermophilic and thermotolerant fungi in lignin-containing media. Mycologia 69:463–476

    Article  CAS  Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B 46:1–15

    Article  CAS  Google Scholar 

  • Trinder P (1966) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–28

    Google Scholar 

  • Van Bloois E, Pazmiño DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430

    Article  PubMed  Google Scholar 

  • Varma A, Kolli BK, Paul J, Saxena S, König H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol Rev 15:9–28

    Article  CAS  Google Scholar 

  • Wang YM, Zhang ZS, Ruan JS (1996) A proposal to transfer Microbispora bispora (Lechevalier 1965) to a new genus, Thermobispora gen. nov., as Thermobispora bispora comb. nov. Int J Syst Bacteriol 46:933–938

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang ZS, Ruan JS, Wang YM, Ali SM (1999) Investigation of actinomycete diversity in the tropical rainforests of Singapore. J Ind Microbiol Biotechnol 23:178–187

    Article  CAS  Google Scholar 

  • Watanabe Y, Shinzato N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801

    Article  PubMed  CAS  Google Scholar 

  • Wenzel M, Schönig I, Berchtold M, Kämpfer P, König H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40

    Article  PubMed  CAS  Google Scholar 

  • Winter B, Fiechter A, Zimmerman W (1991) Degradation of organochlorine compounds in spent sulfite bleach plant effluents by Actinomycetes. Appl Environ Microbiol 57:2858–2863

    PubMed  CAS  Google Scholar 

  • Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  • Xu J, Yang Q (2010) Isolation and characterization of rice straw degrading Streptomyces griseorubens C-5. Biodegradation 21:107–116

    Article  PubMed  CAS  Google Scholar 

  • Yang H-Y, Chen CW (2009) Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: A case of a double-edged sword. PLoS ONE 4:1–11

    Article  Google Scholar 

Download references

Acknowledgments

Jeffrey Rohland isolated the actinobacterial strains and performed the 16S rRNA analysis of some of the strains, while Marilize Le Roes-Hill performed the screening for oxidative enzymes and some 16S rRNA analyses. We wish to thank Dr Paul Meyers (Department of Molecular and Cell Biology, University of Cape Town; UCT) for the strains from termite guts isolated by Jeffrey Rohland, Dr David Labeda for the actinobacterial control strains (USDA, ARS, NRRL culture collection) and Di James for DNA sequencing, UCT. We also acknowledge funding: Marilize Le Roes-Hill held a Claude Leon Foundation Postdoctoral Fellowship; Jeffrey Rohland was funded by the National Research Foundation (NRF) of South Africa and the University of Cape Town; and Prof. Stephanie Burton is funded by the NRF of South Africa and the Cape Peninsula University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilize Le Roes-Hill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Roes-Hill, M., Rohland, J. & Burton, S. Actinobacteria isolated from termite guts as a source of novel oxidative enzymes. Antonie van Leeuwenhoek 100, 589–605 (2011). https://doi.org/10.1007/s10482-011-9614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9614-x

Keywords

Navigation