Skip to main content

Advertisement

Log in

Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Eight bacterial strains were isolated on kraft lignin (KL) containing mineral salt medium (L-MSM) agar with glucose and peptone from the sludge of pulp and paper mill. Out of these, ITRC-S8 was selected for KL degradation, because of its fast growth at highest tested KL concentration and use of various lignin-related low molecular weight aromatic compounds (LMWACs) as sole source of carbon and energy. The bacterium was identified by biochemical tests as Gram-positive, rod-shaped and non-motile. Subsequent 16S rRNA gene sequencing showed 95% base sequence homology and it was identified as Bacillus sp. In batch experiments, a decrease in pH was observed initially followed by an increase till it reached an alkaline pH, which did not alter the culture growth significantly. The bacterium reduced the colour and KL content of 500 mg l−1 KL in MSM, in the presence of glucose and peptone, at pH 7.6, temperature 30°C, agitation of 120 rpm and 6 days of incubation by 65 and 37% respectively. Significant reduction in colour and KL content in subsequent incubations is indicative of a co-metabolism mechanism, possibly due to initial utilization of added co-substrates for energy followed by utilization of KL as a co-metabolic. The degradation of KL by bacterium was confirmed by GC-MS analysis indicating formation of several LMWACs such as t-cinnamic acid, 3, 4, 5-trimethoxy benzaldehyde and ferulic acid as degradation products, which were not present in the control (uninoculated) sample. This favours the idea of biochemical modification of the KL polymer to a single monomer unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amman R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cell without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  • Anthony L, Pomitto AL III, Crawford DL (1986) Effect of pH on lignin and cellulose degradation by Streptomyces viridosporus. Appl Environ Microbiol 52:246–250

    Google Scholar 

  • Argyropoulos DS, Menachem SB (1997) Lignin. In: Eriksson K-E (ed) Advances in Biochemical Engineering Biotechnology, vol. 57, Springer-Verlag, Germany, pp 127–158

  • Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria. 3rd ed, Cambridge University Press

  • Berrocal M, Ball AS, Huerta S, Barrasa JM, Hernandez M, Perez-Leblic MI, Arias ME (2000) Biological upgrading of wheat straw through solid-state fermentation with Streptomyces cyaneus. Appl Microbiol Biotechnol 54:764–771

    Article  CAS  Google Scholar 

  • Brunow G (2001) Methods to reveal the structure of lignin. In: Hofrichter M, Steinbuchel A (eds) Biopolymers, vol 1. Wiley-VCH, Weinheim, Germany, pp 89–116

    Google Scholar 

  • Chakar SF, Ragauskas JA (2004) Review of current and future softwood kraft lignin process chemistry. Indust Crops Prod 20:131–141

    Article  CAS  Google Scholar 

  • Diez MC, Castillo G, Aguilar L, Vidal G, Mora ML (2002) Operational factor and nutrient effect on activated sludge treatment of Pinus radiata kraft mill wastewater. Bioresour Technol 83:131–138

    Article  CAS  Google Scholar 

  • Fiechter A (1982) Bioalteration of kraft pine lignin by Phanerochaete chrysosporium. Arch Microbiol 132:14–21

    Article  Google Scholar 

  • Forney LJ, Reddy CA (1979) Bacterial degradation of kraft lignin. Dev Indust Microbiol 20:163–175

    Google Scholar 

  • Gaete H, Larrain A, Bay-Schmith E, Baeza J, Rodriguez J (2000) Ecotoxicological assessment of two pulp mill effluent, Biobio river Basin, Chile. Bull Environ Contam Toxicol 65:183–189

    Article  CAS  Google Scholar 

  • Gonzalez B, Merino E, Almeida M, Vicna A (1986) Comparative growth of bacterial isolates on various lignin-related compounds. Appl Environ Microbiol 52:1428–1432

    CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hedges JL, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178

    Article  CAS  Google Scholar 

  • Hernandez M, Hernandez-Coronado M, Ball AS, Arias ME (2001) Degradation of alkali-lignin residues from solid-state fermentation of wheat straw by streptomycetes. Biodegradation 12:219–223

    Article  CAS  Google Scholar 

  • Hernandez M, Rodriguez J, Soliveri J, Copa JL, Perez MI, Arias MF (1994) Paper mill effluent decolourization by fifty Streptomyces strains. Appl Environ Microbiol 60:3909–3913

    CAS  Google Scholar 

  • Kapley A, Lampel K, Purohit HJ (2001) Rapid detection of Salmonella in water samples by multiplex PCR. Water Environ Res 73:461–465

    Article  CAS  Google Scholar 

  • Kato K, Kozaki S, Sakuranaga M (1998) Degradation of lignin compounds by bacteria from termite guts. Biotechnol Lett 20:459–462

    Article  CAS  Google Scholar 

  • Kern HW, Kirk TK (1987) Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99. Appl Microbiol Biotechnol 53:2242–2246

    CAS  Google Scholar 

  • Kirk TK, Schulz E, Connor WL, Lorenz LF, Zeikus JG (1978) Influence of cultural parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–287

    Article  CAS  Google Scholar 

  • Ksibi M, Amor SB, Cherif S, Elaloui E, Houas A, Elaloui M (2003) Photodegradation of lignin from black liquor using UV/TiO2 system. J Photochem Photobiol A: Chem 154:211–218

    Article  CAS  Google Scholar 

  • Kumar L, Rathore VC, Srivastava HS (2001) 14C-[lignin]-ligninocellulose biodegradation by bacteria isolated from polluted soil. Ind J Experiment Biol 39:584–589

    CAS  Google Scholar 

  • Lundquist K, Kirk TK (1971) Acid degradation of lignin. Acta Chem Scand 25:889–894

    Article  CAS  Google Scholar 

  • Masai E, Shinohara S, Hara H, Nishikawa S, Katayama Y, Fukuda M (1999) Genetic and biochemical characterization of a 2-pyrone-4, 6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 181:55–62

    CAS  Google Scholar 

  • Morii H, Nakamiya K, Kinoshita S (1995) Isolation of a lignin-decolorizing bacterium. J Ferment Bioeng 80:296–299

    Article  CAS  Google Scholar 

  • Narde G, Kapley A, Purohit HJ (2004) Isolation and characterization of Citrobacter strain HPC 255 for broad range substrate specificity for chlorophenol. Current Microbiol 48:419–423

    CAS  Google Scholar 

  • Odier E, Monties B (1977) Active ligninolytique “in vitro” de bacterides isolees de paille de ble en decomposition. C R Acad Sci Paris Serie DT 284:2175–2178

    CAS  Google Scholar 

  • Perestelo F, Falcon MA, Carnicero A, Rodriguez A, de la Fuente G (1994) Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnol Lett 16:299–302

    Article  CAS  Google Scholar 

  • Perestelo F, Falcon MA, Perez ML, Roig EC, de la Fuente Martin G (1989) Bioalteration of kraft pine lignin by Bacillus megaterium isolated from compost piles. J Ferment Bioeng 68:151–153

    Article  CAS  Google Scholar 

  • Perestelo F, Rodriguez A, Perez R, Carnicero A, de la Fuente G, Falcon MA (1996) Isolation of a bacterium capable of limited degradation of industrial and labeled natural and synthetic lignins. World J Microbiol Biotechnol 12:111–112

    Article  CAS  Google Scholar 

  • Pfenning N, Lippert KD (1966) Uber das vitamin B-12-bedurbins phototropher schwefelbakterien. Arch Microbiol 55:245–256

    Google Scholar 

  • Raj A, Chandra R (2004) Comparative analysis of physico-chemical and bacteriological parameters of kraft and pulp paper mill effluents. Indian J Environ Prot 24:481–489

    CAS  Google Scholar 

  • Robinson LE, Crawford RL (1978) Degradation of 14-C-labelled lignins by Bacillus megaterium. FEMS Microbiol Lett 4:301–302

    Article  CAS  Google Scholar 

  • Shin KS, Lee YJ (1999) Depolymerisation of lignosulfonate by peroxidase of the white-rot basidiomycete, Pleurotus ostreatus. Biotechnol Lett 21:585–588

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzymes from hymenomycete Phanerochaete chrysosporium. Burds Sci 221:661–663

    Article  CAS  Google Scholar 

  • Trojanowski J, Haider K, Sundman V (1977) Decomposition of 14C-labelled lignin and phenols by a Nocardia s.p. Arch Microbiol 114:149–153

    Article  CAS  Google Scholar 

  • Ulmer DC, Leisola MSA, Schmidt BH, Fiechter A (1983) Rapid degradation of isolated lignin by Phanerochaete chrysosporium. Appl Environ Microbiol 45:1795–1801

    CAS  Google Scholar 

  • Vicuna R, Gonzalez B, Mozuch MD, Kirk TK (1987) Metabolism of lignin model compounds of the arylglycerol- β-aryl ether type by Pseudomonas acidovorans D3. Appl Environ Microbiol 53:2605–2609

    CAS  Google Scholar 

  • Vicuna R, Gonzalez B, Seelenfreund D, Ruttimann C, Salas L (1993) Ability of natural bacterial isolates to metabolize high and low molecular weight lignin-derived molecules. J Biotechnol 30:9–13

    Article  CAS  Google Scholar 

  • Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13:119–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Uttar Pradesh council of science and technology (UP-CST), India for the financial assistance provided to carry out this work. The authors are also thankful to Dr. Jai Raj Behari, Head, Analytical Chemistry Section for his suggestions in the characterization of lignin degradation products by GC-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, A., Reddy, M.M.K., Chandra, R. et al. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 18, 783–792 (2007). https://doi.org/10.1007/s10532-007-9107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9107-9

Keywords

Navigation