Skip to main content
Log in

Ogataea cecidiorum sp. nov., a methanol-assimilating yeast isolated from galls on willow leaves

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Ten strains of a new endophytic ascospore-forming, methanol-assimilating yeast were isolated from the galls induced by sawflies on the leaves of willows in the Losiny Ostrov National Park (Moscow region). Standard phenotypical tests and phylogenetic analyses of 18S rRNA gene, 5.8S-ITS gene region and 26S rRNA gene (D1/D2 domains) sequences showed that the species belongs to the genus Ogataea. We describe it as Ogataea cecidiorum and designate type culture KBP Y-3846 (= CBS 11522T = VKM Y-2982T = VKPM Y-3482T = MUCL 52544T = NCAIM Y.01965T) as the type strain. The new species was registered in MycoBank under MB 515233.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Esteve-Zarzoso B, Belloch F, Uruburu A, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Evol Microbiol 49:329–337

    CAS  Google Scholar 

  • Fall R, Benson A (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1:296–301

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fidalgo-Jiménez A, Daniel H-M, Evrard P, Decock C, Marc-André Lachance M-A (2008) Metschnikowia cubensis sp. nov., a yeast species isolated from flowers in Cuba. Int J Syst Evol Microbiol 58:2955–2961

    Article  PubMed  Google Scholar 

  • Glushakova AM, Yurkov AM, Chernov IYu (2007) Massive isolation of anamorphous ascomycete yeasts Candida oleophila from plant phyllosphere. Microbiology 76(6):799–803

    Article  CAS  Google Scholar 

  • Hinzelin F, Kurtzman CP, Smith MTh (1991) Williopsbs salicorniae sp. nov. Antonie van Leeuwenhoek 59:125–127

    Article  CAS  PubMed  Google Scholar 

  • Inácio J, Rodrigues MG, Sobral P, Fonseca Á (2004) Characterisation and classification of phylloplane yeasts from Portugal related to the genus Taphrina and description of five novel Lalaria species. FEMS Yeast Res 4:541–555

    Article  PubMed  Google Scholar 

  • Isaeva OV, Glushakova AM, Yurkov AM, Chernov IYu (2009) The yeast Candida railenensis in the fruits of English oak (Quercus robur L.). Microbiology 78(3):355–359

    CAS  Google Scholar 

  • James SA, Roberts IN, Collins MD (1998) Phylogenetic heterogeneity of the genus Williopsis as revealed by 18s rRNA gene sequences. Int J Syst Bacteriol 48:591–596

    Article  CAS  PubMed  Google Scholar 

  • Kachalkin AV, Glushakova AM, Yurkov AM, Chernov IYu (2008) Characterization of yeast groupings in the phyllosphere of Sphagnum mosses. Microbiology 77(4):474–481

    Article  CAS  Google Scholar 

  • Kato K, Kurimura Y, Makiguchi N, Asai Y (1974) Determination of methanol strongly assimilating yeasts. J Gen Appl Microbiol 20:123–127

    Article  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (describes the FFT-NS-1, FFT-NS-2 and FFT-NS-i strategies). Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C (1992) DNA relatedness among phenotypically similar species of Pichia. Mycologia 84:72–76

    Article  Google Scholar 

  • Kurtzman CP, Fell JW (1998) Yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman C, Robnett C (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C, Robnett C (2010) Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen. nov., a new member of the Saccharomycetales. FEMS Yeast Res. doi:10.1111/j.1567-1364.2010.00625.x

  • Kurtzman C, Robnett C, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954

    Article  CAS  PubMed  Google Scholar 

  • Lee JD, Komagata K (1980) Pichia cellobiosa, Candida cariosilignicola, and Candida succiphila, new species of methanol-assimilating yeasts. Int J Syst Bacteriol 30:514–519. doi:10.1099/00207713-30-2-514

    Article  CAS  Google Scholar 

  • Limtong S, Srisuk N, Yongmanitchai W, Yurimoto H, Nakase T (2008) Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea. Int J Syst Evol Microbiol 58:302–307

    Article  CAS  PubMed  Google Scholar 

  • Morais R, Teixeira L, Bowles J, Lachance M-A, Rosa C (2004) Ogataea falcaomoraisii sp. nov., a sporogenous methylotrophic yeast from tree exudates. FEMS Yeast Res 5:81–85

    Article  CAS  PubMed  Google Scholar 

  • Nagatsuka Y, Saito S, Sugiyama J (2008) Ogataea neopini sp. nov. and O. corticis sp. nov., with the emendation of the ascomycete yeast genus Ogataea, and transfer of Pichia zsoltii, P. dorogensis, and P. trehaloabstinens to it. J Gen Appl Microbiol 54:353–365

    Article  CAS  PubMed  Google Scholar 

  • Naumova ES, Gazdiev DO, Naumov GI (2004) Molecular divergence of the soil yeasts Williopsis sensu stricto. Microbiology 73(6):768–776

    Article  CAS  PubMed  Google Scholar 

  • Péter G, Tornai-Lehoczki J, Fulop L, Dlauchy D (2003) Six new methanol assimilating yeast species from wood material. Antonie van Leeuwenhoek 84:147–159

    Article  PubMed  Google Scholar 

  • Péter G, Dlauchy D, Tornai-Lehoczki J (2006) Candida floccosa sp. nov., a novel methanol-assimilating yeast species. Int J Syst Evol Microbiol 56:2015–2018

    Article  PubMed  Google Scholar 

  • Péter G, Tornai-Lehoczki J, Dlauchy D (2007) Ogataea allantospora sp. nov., an ascomycetous yeast species from phylloplane. Antonie van Leeuwenhoek 92:443–448

    Article  PubMed  Google Scholar 

  • Péter G, Tornai-Lehoczki J, Dlauchy D (2008) Ogataea nitratoaversa sp. nov., a methylotrophic yeast species from temperate forest habitats. Antonie van Leeuwenhoek 94:217–222

    Article  PubMed  Google Scholar 

  • Phaff HJ, Miller MW, Spencer JFT (1964) Two new species of Pichia isolated from slime fluxes of deciduous trees. Antonie van Leeuwenhoek 30:132–140

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818

    Article  CAS  PubMed  Google Scholar 

  • Price PW (2005) Adaptive radiation of gall-inducing insects. Basic Appl Ecol 6:413–421

    Article  Google Scholar 

  • Redfern M, Shirley P (2002) British plant galls: identification of galls on plants and fungi. Field Stud 10:207–531

    Google Scholar 

  • Sampaio J, Gadanho M, Santos S, Duarte F, Pais C, Fonseca A, Fell J (2001) Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species. Int J Syst Evol Microbiol 51:687–697

    CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75(5):758–771

    Article  Google Scholar 

  • Suh S, Blackwell M, Kurtzman C, Lachance M (2006) Phylogenetics of Saccharomycetales, the ascomycete yeasts. Mycologia 98:1006–1017

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Nakase T (1999) A phylogenetic study of ubiquinone Q-8 species of the genera Candida, Pichia, and Citeromyces based on 18S ribosomal DNA sequence divergence. J Gen Appl Microbiol 45:239–246

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP: phylogenetic analysis using parsimony, version 4.0b10. Illinois Natural History Survey, Champaign

    Google Scholar 

  • Van der Walt JP, Yarrow D (1984) Methods for the isolation, maintenance, classification and identification of yeasts. In: Kreger-van Rij NJW (ed) The yeasts. A taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 45–105

    Google Scholar 

  • Villa-Carvajal M, Querol A, Belloch C (2006) Identification of species in the genus Pichia by restriction of the internal transcribed spacers (ITS1 and ITS2) and the 5.8S ribosomal DNA gene. Antonie van Leeuwenhoek 90:171–181

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M et al (eds) PCR protocols: a guide to methods and applications. Academic Press, Orlando, pp 315–322

    Google Scholar 

  • Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts. A taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100

    Google Scholar 

  • Yurkov AM, Chernov IYu (2005) Geographical races of certain species of ascomycetous yeasts in the Moscow and Novosibirsk regions. Microbiology 74(5):597–601

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chernov, I.Yu. (Moscow State University, Russia) and Daniel, H.-M. (BCCM/MUCL, Belgium) for their valuable suggestions on the manuscript. We also thank Prokhorov, V. P. (Moscow State University, Russia) for correcting the Latin diagnosis of the novel species. Schäfer, A. M. and Maier, W. (Ruhr-Universität Bochum, Germany) are acknowledged for various assistance. This work was supported by the Russian Foundation for Basic Research, project no. 07-04-00481, and the Russian Federation President’s Program to support the Russian Ph.D. research scientists, project no. MK-5278.2008.4. Andrey Yurkov holds a Post-doc fellowship (A/07/94549) from German Academic Exchange Service (DAAD, Germany). We thank Kurtzman C.P. and Robnett C.J. for sharing unpublished data and suggestions to the manuscript. The type strains of Ogataea nitratoaversa and Pichia trehalophila were kindly provided by Péter G (NCAIM, Hungary) and Daniel H.-M. (BCCM/MUCL, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Glushakova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

PCR fingerprinting profiles with primer M13 for selected strains of O. cecidiorum sp. nov. Lanes: M, markers; N, negative control; 1, ex type of O. cecidiorum; other analysed strains of O. cecidiorum: 2, iG-P2; 3, iG-P3; 4, iG-P4; 5, iG-P5; 6, iG-P6; 7, iG-P7; 8, iG-P8; 9, iG-P9; 10, iG-10. Strains conspecific according to 5.8S-ITS sequence data are marked with asterisk. (TIFF 478 kb)

Fig. S2

Phylogenetic placement of O. cecidiorum obtained by maximum likelihood analysis of 18S rRNA and 26S rRNA (D1/D2 domains) genes. The numbers given on branches are frequencies (>50%) with which a given branch appeared in 1,000 bootstrap replications. The scale indicates the number of expected substitutions accumulated per site. The tree is rooted with Schizosaccharomyces pombe (EU011742 U40085). Sequence accession numbers of type strains are listed, sequences determined in this study are given in bold. (EPS 512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glushakova, A.M., Maximova, I.A., Kachalkin, A.V. et al. Ogataea cecidiorum sp. nov., a methanol-assimilating yeast isolated from galls on willow leaves. Antonie van Leeuwenhoek 98, 93–101 (2010). https://doi.org/10.1007/s10482-010-9433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9433-5

Keywords

Navigation