Skip to main content
Log in

The parA Region of Broad-Host-Range PromA Plasmids Is a Carrier of Mobile Genes

  • Methods
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The ecological competences in microbiomes are driven by the adaptive capabilities present within microbiome members. Horizontal gene transfer (HGT) promoted by plasmids provides a rapid adaptive strategy to microbiomes, an interesting feature considering the constantly changing conditions in most environments. This study examined the parA locus, found in the highly promiscuous PromA class of plasmids, as the insertion site for incoming genes. A novel PCR system was designed that enabled examining insertions into this locus. Microbiomes of mangrove sediments, salt marsh, mycosphere, and bulk soil revealed habitat-specific sets of insertions in this plasmid region. Furthermore, such habitats could be differentiated based on patterns of parA-inserted genes, and the genes carried by these plasmids. Thus, a suite of dioxygenase-related genes and transposase elements were found in oil-affected mangroves, whereas genes involved in nitrogen and carbon cycling were detected in salt marsh and soils. All genes detected could be associated with capabilities of members of the microbiome to adapt to and survive in each habitat. The methodology developed in this work was effective, sensitive, and practical, allowing detection of mobilized genes between microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Elsas JD, Bailey MJ (2002) The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42:187–197

    Article  PubMed  Google Scholar 

  2. Walker A (2012) Welcome to the plasmidoma. Nat. Rev. Microbiol. 379

  3. Bedhomme S, Pantoja DP, Bravo G (2017) Plasmid and clonal interference during post horizontal gene transfer evolution. Mol. Ecol. 26:1832–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front. Microbiol. 2:158

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jørgensen TS, Xu Z, Hansen MA, Sørensen SJ, Hansen LH (2014) Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS One 9(2):e87924

    Article  PubMed  PubMed Central  Google Scholar 

  6. Van Elsas JD, McSpadden Gardener BB, Wolters AC, Smit E (1998) Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl. Environ. Microbiol. 64:880–889

    PubMed  PubMed Central  Google Scholar 

  7. Zhang M, Sander V, Pereira e Silva MC, van Elsas JD (2014) IncP-1 and PromA group plasmids are major providers of horizontal gene transfer capacities across bacteria in the mycosphere of different soil fungi. Microbiol. Ecol. 89:516–526

    Article  CAS  Google Scholar 

  8. Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW (2009) Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? ISME J 3:209–215

    Article  CAS  PubMed  Google Scholar 

  9. Smalla K, Sobecky PA (2002) The prevalence and diversity of mobile genetic elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol. Ecol. 42:165–175

    Article  CAS  PubMed  Google Scholar 

  10. Ramsay JP, Firth N (2017) Diverse mobilization strategies facilitate transfer of non-conjugative mobile elements. Curr. Opin. Microbiol. 38:1–9

    Article  CAS  PubMed  Google Scholar 

  11. Norman A, Riber L, Luo W, Li LL, Hansen LH, et al. (2014) An improved method for including upper size range plasmids in metamobilomes. PLoS One 9(8):e104405

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F (2010) Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74:434–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamminen M, Virta M, Fani R, Fondi M (2013) Large-scale analysis of plasmid relationships through gene-sharing networks. Mol. Biol. Evol. 29:1225–1240

    Article  Google Scholar 

  14. Van der Auwera GA, Krol JE, Suzuki H, Foster B, Van Houdt RC, Brown J, Mergeay M, Top EM (2009) Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Ant van Leeuw 96:193–204

    Article  Google Scholar 

  15. Bouhajja E, Efthymiopoulos T, George IF, Moreels D, Van Houdt R, Mergeay M, Agathos SN (2016) Conjugative transfer of broad host range plasmids to an acidobacterial strain, Edaphobacter aggregans. J. Biotechnol. 221:107–113

    Article  CAS  PubMed  Google Scholar 

  16. Tauch A, Schneiker S, Selbitschka W, Pühler A, van Overbeek LS, Smalla K, et al. (2002) The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology 148:1637–1653

    Article  CAS  PubMed  Google Scholar 

  17. Gstalder ME, Faelen M, Mine N, Top EM, Mergeay M, Couturier M (2003) Replication functions of new broad host range plasmids isolated from polluted soils. Res. Microbiol. 154:499–509

    Article  CAS  PubMed  Google Scholar 

  18. Schneiker S, Keller M, Dröge M, Lanka E, Pühler A, Selbitschka W (2001) The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucl. Acids Res. 29:5169–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mela F, Fritsche K, Boersma H, Van Elsas JD, Bartels D, Meyer F, et al. (2008) Comparative genomics of the pIPO2/pSB102 family of environmental plasmids: sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331. FEMS Microbiol. Ecol. 66:45–62

    Article  CAS  PubMed  Google Scholar 

  20. Ito H, Iizuka H (1971) Taxonomic studies on a radio-resistant Pseudomonas. XII. Studies on the microorganisms of cereal grain. Agric. Biol. Chem. 35:1566–1571

    Google Scholar 

  21. Li X, Top EM, Wang Y, Brown CJ, Yao F, Yang S, Jiang Y, Li H (2015) The broad- host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family. Front. Microbiol. 5:777

    PubMed  PubMed Central  Google Scholar 

  22. Brooks AC, Hwang LC (2017) Reconstitutions of plasmid partition systems and their mechanisms. Plasmid 91:37–41

    Article  CAS  PubMed  Google Scholar 

  23. Nordström K, Molina S, Aagaard-Hansen H (1980) Partitioning of plasmid R1 in Escherichia coli: II incompatibility properties of the partitioning system. Plasmid 4:332–349

    Article  PubMed  Google Scholar 

  24. Lee PS, Chi-Hong LD, Moriya S, Grossman AD (2003) Effects of the chromosome partitioning protein spo0J (parB) on oriC positioning and replication initiation in Bacillus subtilis. J. Bacteriology 185:1326–1337

    Article  CAS  Google Scholar 

  25. Godfrin-Estevenon AM, Pasta F, Lane D (2002) The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol. Microbiol. 43:39–49

    Article  CAS  PubMed  Google Scholar 

  26. Andreote FD, Jimenez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, et al. (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One 7:1–14

    Article  Google Scholar 

  27. Dini-Andreote F, Pereira e Silva MC, Triadó-Margarit X, Casamayor EO, van Elsas JD, Salles JF (2014) Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J. 8:1989–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inceoglu Ö, Salles JF, van Overbeek L, van Elsas JD (2010) Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. App. Environ. Microbiol. 11:3675e3684

    Google Scholar 

  29. Ye et al. (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf. 13:134

    Article  CAS  Google Scholar 

  30. Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. University Press, Cambridge,

    Book  Google Scholar 

  31. Chou HH, Holmes HM (2001) DNA sequence quality trimming and vector removal. Bionformatics. 17:1093–1104

    Article  CAS  Google Scholar 

  32. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Warmink JA, Nazir R, van Elsas JD (2009) Universal and species-specific bacterial “fungiphiles” in the mycosphere of different basidiomycetous fungi. Environ. Microbiol. 11:300–312

    Article  CAS  PubMed  Google Scholar 

  34. Fukui T, Ito M, Tomita K (1982) Purification and characterization of acetoacetyl-CoA synthetase from Zoogloea ramigera I-16-M. Europ. J. Bioch. 127:423–428

    Article  CAS  Google Scholar 

  35. Vandecraen J, Chandler M, Aertsen A, van Houdt R (2017) The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 13:1–22

    Google Scholar 

  36. Dias ACF, Andreote FD, Rigonato J, Fiore MF, Melo IS, Araujo WL (2010) The bacterial diversity in Brazilian non-disturbed mangrove sediment. Ant. van Leeuw. 98:541–551

    Article  Google Scholar 

  37. Koop-Jakobsen K, Giblin AE (2010) The effect of increased nitrate loading on nitrate reduction via denitrification and DNRA in salt marsh sediments. Limnol. Oceanogr. 55:789–802

    Article  CAS  Google Scholar 

  38. Junior GVL, Noronha MF, Sousa STP, Cabral L, Domingos DF, Sáber ML, Melo IS, Oliveira VM (2017) Potential of semiarid soil from Caatinga biome as a novel source for mining lignocelluose-degrading enzymes. FEMS Microbiol. Ecol 93:fiw248

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Jolanda Brons and Deborah Leite for their technical support during the experiments and Francisco Dini Andreote for help in the figure preparation. We also thank FAPESP for their financial support for this study (process 2015/01290-8) and CNPq (Universal Project—443815/2014-3). SRC received a grant from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Cavalcante Franco Dias.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, A.C.F., Cotta, S.R., Andreote, F.D. et al. The parA Region of Broad-Host-Range PromA Plasmids Is a Carrier of Mobile Genes. Microb Ecol 75, 479–486 (2018). https://doi.org/10.1007/s00248-017-1059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1059-y

Keywords

Navigation