Skip to main content

Advertisement

Log in

Comparative analysis of Pasteurella pneumotropica isolates from laboratory mice and rats

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Selected biochemical and genetic characteristics of the wild-type strains of Pasteurella pneumotropica isolated from mice and rats were investigated and compared in order to determine the significant differences among the isolates. The isolates were divided into six groups on the basis of the patterns of carbon source utilization in the host rodents. The genome sizes were determined by electrophoretic analysis, and the mean genome size of the isolates from mice was larger than that of the isolates from rats (P < 0.05). Cluster analysis of the rpoB sequences discriminated five clusters; the differences might have correlated with the host associations. Principal component analysis (PCA) based on both the biochemical and genetic characteristics revealed total 44 strains discriminated into three groups comprising the host-dependent and host-independent groups. Although the P. pneumotropica isolates were mainly classified on the basis of the host rodents by the examinations, the existence of isolates that could not be discriminated on the basis of the host rodents alone was confirmed by the PCA. These results indicated that the P. pneumotropica isolates could be further classified by taxonomic analysis and also suggested the existence of a host-independent group in addition to the host-dependent groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCA:

Principal component analysis

PFGE:

Pulsed-field gel electrophoresis

rRNA:

ribosomal RNA

References

  • Boot R, van de Berg L (2006) Evaluation of antigen panels for ELISA monitoring of mouse colonies for antibodies to Pasteurellaceae. Lab Anim 40:194–199. doi:10.1258/002367706776319051

    Article  PubMed  CAS  Google Scholar 

  • Chevallier B, Dugourd D, Tarasiuk K, Harel J, Gottschalk M, Kobisch M, Frey J (1998) Chromosome sizes and phylogenetic relationships between serotypes of Actinobacillus pleuropneumoniae. FEMS Microbiol Lett 160:209–216. doi:10.1111/j.1574-6968.1998.tb12913.x

    Article  PubMed  CAS  Google Scholar 

  • Christensen H, Foster G, Christensen JP, Pennycott T, Olsen JE, Bisgaard M (2003) Phylogenetic analysis by 16S rDNA gene sequence comparison of avian taxa of Bisgaard and characterization and description of two new taxa of Pasteurellaceae. J Appl Microbiol 95:354–363. doi:10.1046/j.1365-2672.2003.01986.x

    Article  PubMed  CAS  Google Scholar 

  • Christensen H, Kuhnert P, Olsen JE, Bisgaard M (2004) Comparative phylogenies of the housekeeping genes atpD, infB and rpoB and the 16S rRNA gene within the Pasteurellaceae. Int J Syst Evol Microbiol 54:1601–1609. doi:10.1099/ijs.0.03018-0

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst FE, Paster BJ, Olsen I, Fraser GJ (1992) Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences. J Bacteriol 174:2002–2013

    PubMed  CAS  Google Scholar 

  • Foote SJ, Bossé JT, Bouevitch AB, Langford PR, Young NM, Nash JH (2008) The complete genome sequence of Actinobacillus pleuropneumoniae L20 (serotype 5b). J Bacteriol 190:1495–1496. doi:10.1128/JB.01845-07

    Article  PubMed  CAS  Google Scholar 

  • Fray MD, Pickard AR, Harrison M, Cheeseman MT (2008) Upgrading mouse health and welfare: direct benefits of a large-scale rederivation programme. Lab Anim 42:127–139. doi:10.1258/la.2007.007005

    Article  PubMed  CAS  Google Scholar 

  • Gürtler V, Mayall BC (2001) Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51:3–16

    PubMed  Google Scholar 

  • Harrison A, Dyer DW, Gillaspy A, Ray WC, Mungur R, Carson MB, Zhong H, Gipson J, Gipson M, Johnson LS, Lewis L, Bakaletz LO, Munson RS Jr (2005) Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J Bacteriol 187:4627–4636. doi:10.1128/JB.187.13.4627-4636.2005

    Article  PubMed  CAS  Google Scholar 

  • Hart ML, Mosier DA, Chapes SK (2003) Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia. Infect Immun 71:663–670. doi:10.1128/IAI.71.2.663-670.2003

    Article  PubMed  CAS  Google Scholar 

  • Heyl JG (1963) A study of Pasteurella strains from animal sources. Antonie Van Leeuwenhoek 29:79–83. doi:10.1007/BF02046040

    Article  PubMed  CAS  Google Scholar 

  • Hunt ML, Ruffolo CG, Rajakumar K, Adler B (1998) Physical and genetic map of the Pasteurella multocida A:1 chromosome. J Bacteriol 180:6054–6058

    PubMed  CAS  Google Scholar 

  • Kodjo A, Villard L, Veillet F, Escande F, Borges E, Maurin F, Bonnod J, Richard Y (1999) Identification by 16S rDNA fragment amplification and determination of genetic diversity by random amplified polymorphic DNA analysis of Pasteurella pneumotropica isolated from laboratory rodents. Lab Anim Sci 49:49–53

    PubMed  CAS  Google Scholar 

  • Korczak B, Kuhnert P (2008) Phylogeny of Pasteurellaceae. In: Kuhnert P, Christensen H (eds) Pasteurellaceae. Horizon Scientific Press, Norwich, pp 26–52

    Google Scholar 

  • Korczak B, Christensen H, Emler S, Frey J, Kuhnert P (2004) Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int J Syst Evol Microbiol 54:1393–1399. doi:10.1099/ijs.0.03043-0

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Schleifer KH (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15:155–173. doi:10.1111/j.1574-6976.1994.tb00132.x

    Article  PubMed  CAS  Google Scholar 

  • Macy JD Jr, Weir EC, Compton SR, Shlomchik MJ, Brownstein DG (2000) Dual infection with Pneumocystis carinii and Pasteurella pneumotropica in B cell-deficient mice: diagnosis and therapy. Comp Med 50:49–55

    PubMed  Google Scholar 

  • Manning PJ, DiGiacomo RF, DeLong D (1989) Pasteurellosis in laboratory animals. In: Adlam C, Rutter JM (eds) Pasteurella and Pasteurellosis. Academic Press, London, pp 263–302

    Google Scholar 

  • May BJ, Zhang Q, Li LL, Paustian ML, Whittam TS, Kapur V (2001) Complete genomic sequence of Pasteurella multocida, Pm70. Proc Natl Acad Sci USA 98:3460–3465. doi:10.1073/pnas.051634598

    Article  PubMed  CAS  Google Scholar 

  • Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011. doi:10.1046/j.1365-2958.1997.6382009.x

    Article  PubMed  CAS  Google Scholar 

  • Mutters R, Frederiksen W, Mannheim W (1984) Lack of evidence for the occurrence of Pasteurella ureae in rodents. Vet Microbiol 9:83–93. doi:10.1016/0378-1135(84)90081-6

    Article  PubMed  CAS  Google Scholar 

  • Mutters R, Ihm P, Pohl S, Frederiksen W, Mannheim W (1985) Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis and Pasteurella langaa. Int J Syst Bacteriol 35:309–322

    Article  Google Scholar 

  • Mutters R, Christensen H, Bisgaard M (2005) Genus I. Pasteurella Trevisan 1887. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2, part B. Springer, New York, pp 857–866

    Google Scholar 

  • Nakagawa M, Saito M, Kohjima K (1981) Mutual transmission of Pasteurella pneumotropica between mice and rats. Nippon Juigaku Zasshi 43:937–940

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Laboratory, New York

    Google Scholar 

  • Sasaki H, Kawamoto E, Okiyama E, Ueshiba H, Mikazuki K, Amao H, Sawada T (2006a) Molecular typing of Pasteurella pneumotropica isolated from rodents by amplified 16S ribosomal DNA restriction analysis and pulsed-field gel electrophoresis. Microbiol Immunol 50:265–272

    PubMed  CAS  Google Scholar 

  • Sasaki H, Kawamoto E, Ueshiba H, Amao H, Sawada T (2006b) Phylogenetic relationship of Pasteurella pneumotropica isolates from laboratory rodents based on 16S rDNA sequence. J Vet Med Sci 68:639–641. doi:10.1292/jvms.68.639

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Valcarcel J, Allardet-Servent A, Bourg G, O’Callaghan D, Michailesco P, Ramuz M (1997) Investigation of the Actinobacillus actinomycetemcomitans genome by pulsed field gel electrophoresis. Oral Microbiol Immunol 12:33–39. doi:10.1111/j.1399-302X.1997.tb00364.x

    Article  PubMed  CAS  Google Scholar 

  • Wang RF, Campbell W, Cao WW, Summage C, Steele RS, Cerniglia CE (1996) Detection of Pasteurella pneumotropica in laboratory mice and rats by polymerase chain reaction. Lab Anim Sci 46:81–85

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would acknowledge Mr. Susumu Hayakari for his valuable advice regarding the statistical analysis. This study was partly supported by a grant-in-aid (No. 20700369) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiraku Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, H., Kawamoto, E., Tanaka, Y. et al. Comparative analysis of Pasteurella pneumotropica isolates from laboratory mice and rats. Antonie van Leeuwenhoek 95, 311–317 (2009). https://doi.org/10.1007/s10482-009-9315-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9315-x

Keywords

Navigation