Skip to main content
Log in

Enzymatic and genetic profiles in environmental strains grown on polycyclic aromatic hydrocarbons

  • Original Research Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The possible generation of oxidative stress induced by aromatic hydrocarbon degradation suggests that ancillary enzyme activities could facilitate the utilization of polycyclic aromatic hydrocarbons as sole carbon source. To investigate the metabolic profiles of low molecular weight polycyclic aromatic hydrocarbon-degrading strains of Sphingobium chlorophenolicum, Rhodococcus aetherovorans, Rhodococcus opacus and Mycobacterium smegmatis, the determination of the activity of putative detoxifying enzymes (rhodanese-like and glutathione S-transferase proteins) was combined with genetic analyses. All the studied strains were able to utilize phenanthrene or naphthalene. Glutathione S-transferase activity was found in S. chlorophenolicum strains grown on phenanthrene and it was related to the presence of the bphK gene, since modulation of glutathione S-transferase activity by phenanthrene paralleled the induction of glutathione S-transferase transcript in the S. chlorophenolicum strains. No glutathione S-transferase activity was detectable in R. aetherovorans, R. opacus and in M. smegmatis strains. All strains showed 3-mercaptopyruvate:cyanide sulfurtransferase activity. A rhodanese-like SseA protein was immunodetected in R. aetherovorans, R. opacus and in M. smegmatis strains, where increase of 3-mercaptopyruvate:cyanide sulfurtransferase activity was significantly induced by growth on phenanthrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

bphK :

gene for glutathione S-transferase

CDNB:

1,dichloro-2,4-nitrobenzene

GST:

glutathione S-transferase

MST:

3-mercaptopyruvate:cyanide sulfurtransferase

PAHs:

polycyclic aromatic hydrocarbons

phnA1 :

gene for 3,4-phenanthrene dioxygenase

ROS:

reactive oxygen species

TST:

thiosulfate:cyanide sulfurtransferase

xylE :

2,3-catechol dioxygenase

xylX :

ring hydroxylating dioxygenase

narAa :

naphthalene dioxygenase

References

  • Adams H, Teertstra W, Koster M, Tommassen J (2002) PspE (phage-shock protein E) of Escherichia coli is a rhodanese. FEBS Lett 518:173–176

    Article  PubMed  CAS  Google Scholar 

  • Andreoni V, Bernasconi S, Colombo M, Beilen JB, Cavalca L (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2:572–577

    Article  PubMed  CAS  Google Scholar 

  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57:401–412

    Article  PubMed  CAS  Google Scholar 

  • Asaoka K, Ito H, Takahashi K (1977) Monkey glutathione S-aryltransferases. J Biochem 82:973–981

    PubMed  CAS  Google Scholar 

  • Bae M, Sul WJ, Koh SC, Lee JH, Zylstra GJ, Kim YM, Kim E (2003) Implication of two glutathione S-transferases in the optimal metabolism of m-toluate by Sphingomonas yanoikuyae B1. Ant van Leeuw 84:25–30

    Article  CAS  Google Scholar 

  • Bartels F, Backhaus S, Moore ERB, Timmis KN, Hofer B (1999) Occurrence and expression of glutathione S-transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. Microbiology 145:2821–2834

    PubMed  CAS  Google Scholar 

  • Basu A, Apte SK, Phale PS (2006) Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol 72:2226–2230

    Article  PubMed  CAS  Google Scholar 

  • Bordo D, Forlani F, Spallarossa A, Colnaghi R, Carpen A, Bolognesi M, Pagani S (2001) A persulfurated cysteine promotes active-site reactivity in Azotobacter vinelandii rhodanese. Biol Chem 382:1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep 8:741–746

    Article  CAS  Google Scholar 

  • Bordo D, Deriu D, Colnaghi R, Carpen A, Pagani S, Bolognesi M (2000) The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between rhodanese and phosphatase enzymes family. J Mol Biol 298:691–704

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cavalca L, Colombo M, Larcher S, Gigliotti C, Collina E, Andreoni V (2002) Survival and naphthalene-degrading activity of Rhodococcus sp. strain 1BN in soil microcosms. J Appl Microbiol 92:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Cereda A, Forlani F, Iametti S, Bernhardt R, Ferranti P, Picariello G, Pagani S, Bonomi F (2003) Molecular recognition between Azotobacter vinelandii rhodanese and a sulfur acceptor protein. Biol Chem 384:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Chavez FP, Lunsdorf H, Jerez CA (2004) Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072

    Article  PubMed  CAS  Google Scholar 

  • Colnaghi R, Cassinelli G, Drummond M, Forlani F, Pagani S (2001) Properties of the Escherichia coli rhodanese-like protein SseA: contribution of the active-site residue Ser240 to sulfur donor recognition. FEBS Lett 500:153–156

    Article  PubMed  CAS  Google Scholar 

  • Demanèche S, Meyer C, Micoud J, Louwagie M, Willison JC, Jounanneau Y (2004) Identification and functional analysis of two aromatic ring hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:6714–6725

    Article  PubMed  CAS  Google Scholar 

  • Favaloro B, Tamburro A, Trofino MA, Bologna L, Rotilio D, Heipieper HJ (2000) Modulation of the glutathione S-transferase in Ochrobactrum anthropi: function of xenobiotic substrates and other forms of stress. Biochem J 346:553–559

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Zylstra GJ (1999) Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 23:294–302

    Article  PubMed  CAS  Google Scholar 

  • Jarabak R, Westley J (1980) 3-Mercaptopyruvate sulfotransferase rapid equilibrium-ordered mechanism with cyanide as the acceptor substrate. Biochemistry 19:900–904

    Article  PubMed  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  PubMed  CAS  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Juoanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1:evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185:3828–3841

    Article  PubMed  CAS  Google Scholar 

  • Kunz DA, Chapman PJ (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt−2: evidence for new function of the TOL (pWW0) plasmid. J Bacteriol 146:179–191

    PubMed  CAS  Google Scholar 

  • Lloyd-Jones G, Lau PCK (1997) Glutathione S-transferase encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons. Appl Environ Microbiol 63:3286–3290

    PubMed  CAS  Google Scholar 

  • Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Industr Microbiol Biotechnol 23:380–390

    Article  CAS  Google Scholar 

  • Pagani S, Forlani F, Carpen A, Bordo D, Colnaghi R (2000) Mutagenic analysis of Thr232 in rhodanese from Azotobacter vinelandii highlighted the differences of this prokaryotic enzyme from the known sulfurtransferases. FEBS Lett 472:307–311

    Article  PubMed  CAS  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003a) The unique aromatic catabolic gene in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen App Microbiol 49:1–19

    Article  CAS  Google Scholar 

  • Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T (2003b) Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301:350–357

    Article  CAS  Google Scholar 

  • Ploegman JH, Drent G, Kalk KH, Hol WG, Heinrikson RL, Keim P, Weng L, Russell J (1978) The covalent and tertiary structure of bovine liver rhodanese. Nature 273:124–129

    Article  PubMed  CAS  Google Scholar 

  • Ray WK, Zeng G, Potters MB, Mansuri AM, Larson TJ (2000) Characterization of a 12-Kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin. J Bacteriol 182:2277–2284

    Article  PubMed  CAS  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-Kilobase Catabolic Plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    PubMed  CAS  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 38:1331–1337

    Article  PubMed  CAS  Google Scholar 

  • Santos PM, Benndorf D, Sá-Correla I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652

    Article  PubMed  CAS  Google Scholar 

  • Sorbo B (1953) Rhodanese. Acta Chem Scand 7:1137–1145

    Article  CAS  Google Scholar 

  • Tamburro A, Robuffo I, Heipieper HJ, Allocati N, Rotilio D, Di Ilio C, Favaloro B (2004) Expression of glutathione S-transferase and peptide methionine sulfohoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates. FEMS Microbiol Lett 241:151–156

    Article  PubMed  CAS  Google Scholar 

  • Van Hylckama JET, Leemhuis H, Spelberg JHL, Janssen DB (2000) Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. J Bacteriol 182:1956–1963

    Article  Google Scholar 

  • Vuilleumier S, Pagni M (2002) The elusive roles of bacterial glutathione S-transferase: new lessons from genome. Appl Microbiol Biotechnol 58:138–146

    Article  PubMed  CAS  Google Scholar 

  • Westley J (1977) Sulfane-transfer catalysis by enzymes. In: Van Tamelen EE (eds) Bio-organic chemistry, vol. 1. Academic Press, Orlando, FL, pp 371–390

    Google Scholar 

  • Xia Y, Min H, Rao G, Lv Z, Liu J, Ye Y, Duan X (2005) Isolation and characterization of phenanthrene-degrading Sphingomonas paucimobilis strain ZX4. Biodegradation 16:393–402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Italian National Research Program PRIN 2003 “Selezione di colture batteriche per la degradazione di POP e loro monitoraggio in processi di bioarricchimento dei suoli”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Pagani.

Additional information

Sequence accession numbers: narAa of 1BN was under the GeneBank acc. num.: AJ401612.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalca, L., Guerrieri, N., Colombo, M. et al. Enzymatic and genetic profiles in environmental strains grown on polycyclic aromatic hydrocarbons. Antonie van Leeuwenhoek 91, 315–325 (2007). https://doi.org/10.1007/s10482-006-9119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9119-1

Keywords

Navigation