Skip to main content
Log in

Differential evolution and combinatorial search for constrained index-tracking

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Index-tracking is a low-cost alternative to active portfolio management. The implementation of a quantitative approach, however, is a major challenge from an optimization perspective. The optimal selection of a group of assets that can replicate the index of a much larger portfolio requires both to find the optimal subset of assets and to fine-tune their weights. The former is a combinatorial, the latter a continuous numerical problem. Both problems need to be addressed simultaneously, because whether or not a selection of assets is promising depends on the allocation weights and vice versa. Moreover, the problem is usually of high dimension. Typically, an optimal subset of 30–150 positions out of 100–600 need to be selected and their weights determined. Search heuristics can be a valuable alternative to traditional methods, which often cannot deal with the problem. In this paper, we propose a new optimization method, which is partly based on Differential Evolution (DE) and on combinatorial search. The main advantage of our method is that it can tackle the index-tracking problem as complex as it is, generating accurate and robust results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beasley, J. E., Meade, N., & Chang, T. J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148, 621–643.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Focardi, S. M., & Fabozzi, F. J. (2004). A methodology for index tracking based on times-series clustering. Quantitative Finance, 4, 417–425.

    Article  Google Scholar 

  • Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution. New York: Wiley.

    Google Scholar 

  • Gilli, M., & Këllezi, E. (2002). The threshold accepting heuristic for index tracking. In P. Pardalos & V. Tsitsiringos (Eds.), Financial engineering, e-commerce, and supply chain. Boston: Kluwer Academic.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimisation. In Proc. of the 1995 IEEE international conference on neural networks (Vol. 4, pp. 1942–1948). New York: IEEE Press.

    Chapter  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Krink, T., & Paterlini, S. (2009). DEMPO—differential evolution for multiobjective portfolio optimization. Computational Management (accepted).

  • Krink, T., Filipič, B., Fogel, G., & Thomsen, R. (2004). Noisy optimisation problems—a particular challenge for differential evolution? In Proceedings of the sixth congress on evolutionary computation (CEC-2004) (pp. 332–339). New York: IEEE Press.

    Chapter  Google Scholar 

  • Krink, T., Paterlini, S., & Resti, A. (2007). Using Differential Evolution to improve the accuracy of bank rating systems. Computational Statistics & Data Analysis, 52/1, 68–87.

    Article  Google Scholar 

  • Maringer, D., & Oyewumi, O. (2007). Index tracking with constrained portfolios. Intelligent Systems in Finance, Accounting and Management, 15, 57–71.

    Article  Google Scholar 

  • Maringer, D., & Parpas, P. (2009). Global optimization of higher order moments in portfolio selection. Journal of Global Optimization, 4, 219–230.

    Article  Google Scholar 

  • Michalewicz, Z., & Fogel, D. B. (2004). How to solve it: modern heuristics. New York: Springer.

    Google Scholar 

  • Paterlini, S., & Krink, T. (2006). Differential evolution and particle swarm optimisation in partitional clustering. Computational Statistics & Data Analysis, 50/5, 1220–1247.

    Article  Google Scholar 

  • Rechenberg, I. (1973). Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Stuttgart: Frommann-Holzboog.

    Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

  • Ursem, R. K. (2002). Diversity-guided evolutionary algorithms. In J. J. M. Guervs et al. (Eds.), LNCS : Vol. 2439. Proc. 7th int. conf. parallel problem solving from nature, Granada, Spain. Berlin: Springer.

    Chapter  Google Scholar 

  • Vesterstrøm, J., & Thomsen, R. (2004). A comparative study of differential evolution, particle swarm optimisation and evolutionary algorithms on numerical benchmark problems. In Proc. of the sixth congress on evolutionary computation (CEC-2004) (pp. 1980–1987). New York: IEEE Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Paterlini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krink, T., Mittnik, S. & Paterlini, S. Differential evolution and combinatorial search for constrained index-tracking. Ann Oper Res 172, 153–176 (2009). https://doi.org/10.1007/s10479-009-0552-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0552-1

Keywords

Navigation