Skip to main content

Advertisement

Log in

Lifting, superadditivity, mixed integer rounding and single node flow sets revisited

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this survey we attempt to give a unified presentation of a variety of results on the lifting of valid inequalities, as well as a standard procedure combining mixed integer rounding with lifting for the development of strong valid inequalities for knapsack and single node flow sets. Our hope is that the latter can be used in practice to generate cutting planes for mixed integer programs.

The survey contains essentially two parts. In the first we present lifting in a very general way, emphasizing superadditive lifting which allows one to lift simultaneously different sets of variables. In the second, our procedure for generating strong valid inequalities consists of reduction to a knapsack set with a single continuous variable, construction of a mixed integer rounding inequality, and superadditive lifting. It is applied to several generalizations of the 0–1 single node flow set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atamtürk, A. (2001). Flow pack facets of the single node fixed-charge flow polytope. Operations Research Letters, 29, 107–114.

    Article  Google Scholar 

  • Atamtürk, A. (2003). On the facets of the mixed-integer knapsack polyhedron. Mathematical Programming, 98, 145–175.

    Article  Google Scholar 

  • Atamtürk, A., & Munoz (2004). A study of the lot-sizing polytope. Mathematical Programming, 99, 443–465.

    Article  Google Scholar 

  • Atamtürk, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2001). Valid inequalities for problems with additive variable upper bounds. Mathematical Programming, 91, 145–162.

    Google Scholar 

  • Balas, E. (1975). A time indexed formulation of non-preemptive single machine scheduling problems. Mathematical Programming, 8, 146–164.

    Article  Google Scholar 

  • Ceria, S., Cordier, C., Marchand, H., & Wolsey, L. A. (1998). Cutting planes for integer programs with general integer variables. Mathematical Programming, 81, 201–214.

    Google Scholar 

  • Crowder, H., Johnson, E. L., & Padberg, M. W. (1963). Solving large scale zero-one linear programming problems. Operations Research, 31, 803–834.

    Google Scholar 

  • Goemans, M. X. (1989). Valid inequalities and separation for mixed 0–1 constraints with variable upper bounds. Operations Research Letters, 8, 315–322.

    Article  Google Scholar 

  • Gomory, R. E. (1960). An algorithm for the mixed integer problem. Research report RM-2597, The Rand Corporation.

  • Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1998). Lifted flow cover inequalities for 0–1 integer programs: computation. INFORMS J. of Computing, 10, 427–437.

    Google Scholar 

  • Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1999). Lifted flow cover inequalities for mixed 0–1 integer programs. Mathematical Programming, 85, 439–468.

    Article  Google Scholar 

  • Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (2000). Sequence independent lifting in mixed integer programing. Journal of Combinatorial Optimization, 4, 109–129.

    Article  Google Scholar 

  • Hammer, P. L., Johnson, E. L., & Peled, U. N. (1975). Facets of regular 0–1 polytopes. Mathematical Programming, 8, 179–206.

    Article  Google Scholar 

  • Jeroslow, R. G. (1979). An introduction to the theory of cutting planes. Annals of Discrete Mathematics, 5, 71–95.

    Article  Google Scholar 

  • Johnson, E. L. (1973). Cyclic groups, cutting planes and shortest paths. In T. C. Hu, S. Robinson (Eds.), Mathematical Programming (pp. 185–211). New York: Academic.

    Google Scholar 

  • Louveaux, Q., & Wolsey, L. A. (2003). Lifting, superadditivity, mixed integer rounding and single node flow sets revisited. 4OR, 1, 173–208.

    Google Scholar 

  • Marchand, H., & Wolsey, L. A. (1999). The 0–1 knapsack problem with a single continuous variable. Mathematical Programming, 85, 15–33.

    Article  Google Scholar 

  • Marchand, H., & Wolsey, L. A. (2001). Aggregation and mixed integer rounding to solve MIPS. Operations Research, 49, 363–371.

    Article  Google Scholar 

  • Miller, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2003a). A multi-item production planning model with setup times: algorithms, reformulations, and polyhedral characterizations for a special case. Mathematical Programming B, 95, 71–90.

    Article  Google Scholar 

  • Miller, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2003b). On the polyhedral structure of a multi-item production planning model with setup times. Mathematical Programming B, 94, 375–406.

    Article  Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley.

    Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1990). A recursive procedure for generating all cuts for 0–1 mixed integer programs. Mathematical Programming, 46, 379–390.

    Article  Google Scholar 

  • Oosten, M. (1996). A polyhedral approach to grouping problems. Ph.D. thesis, University of Maastricht

  • Padberg, M. (1973). On the facial structure of set packing polyhedra. Mathematical Programming, 5, 199–215.

    Article  Google Scholar 

  • Padberg, M. W., Van Roy, T. J., & Wolsey, L. A. (1985). Valid inequalities for fixed charge problems. Mathematical Programming, 33, 842–861.

    Google Scholar 

  • Richard, J.-P. P., de Farias, I. R., & Nemhauser, G. L. (2002). Lifted inequalities for 0–1 mixed integer programming: basic theory and algorithms. In Lecture notes in computer science, vol. 2337. Proceedings of IPCO 2002 (pp. 161–175). Berlin: Springer.

    Google Scholar 

  • Richard, J.-P. P., de Farias, I. R., & Nemhauser, G. L. (2003). Lifted inequalities for 0–1 mixed integer programming: superlinear lifting. Mathematical Programming, 98, 115–143.

    Article  Google Scholar 

  • Stallaert, J. I. A. (1997). The complementary class of generalized flow cover inequalities. Discrete Applied Mathematics, 77, 73–80.

    Article  Google Scholar 

  • Van Roy, T. J., & Wolsey, L. A. (1986). Valid inequalities for mixed 0–1 programs. Discrete Applied Mathematics, 14, 199–213.

    Article  Google Scholar 

  • Van Roy, T. J., & Wolsey, L. A. (1987). Solving mixed 0–1 programs by automatic reformulation. Operations Research, 35, 45–57.

    Google Scholar 

  • Wolsey, L. A. (1975). Faces for linear inequalities in 0–1 variables. Mathematical Programming, 8, 165–178.

    Article  Google Scholar 

  • Wolsey, L. A. (1976). Facets and strong valid inequalities for integer programs. Operations Research, 24, 367–372.

    Article  Google Scholar 

  • Wolsey, L. A. (1977). Valid inequalities and superadditivity for 0–1 integer programs. Mathematics of Operations Research, 2, 66–77.

    Google Scholar 

  • Wolsey, L. A. (1989). Submodularity and valid inequalities in capacitated fixed charge networks. Operations Research Letters, 8, 119–124.

    Article  Google Scholar 

  • Wolsey, L. A. (1990). Valid inequalities for mixed integer programs with generalised upper bound constraints. Discrete Applied Mathematics, 25, 251–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence A. Wolsey.

Additional information

This paper appeared in 4OR, 1, 173–208 (2003).

The first author is supported by the FNRS as a chercheur qualifié. This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louveaux, Q., Wolsey, L.A. Lifting, superadditivity, mixed integer rounding and single node flow sets revisited. Ann Oper Res 153, 47–77 (2007). https://doi.org/10.1007/s10479-007-0171-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-007-0171-7

Keywords

Navigation