Skip to main content

Advertisement

Log in

Lifting for the integer knapsack cover polyhedron

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the integer knapsack cover polyhedron which is the convex hull of the set consisting of n-dimensional nonnegative integer vectors that satisfy one linear constraint. We study the sequentially lifted (SL) inequality, derived by the sequential lifting from a seed inequality containing a single variable, and provide bounds on the lifting coefficients, which is useful in solving the separation problem of the SL inequalities. The proposed SL inequality is shown to dominate the well-known mixed integer rounding (MIR) inequality under certain conditions. We show that the problem of computing the coefficients for an SL inequality is \(\mathcal{N}\mathcal{P}\)-hard but can be solved by a pseudo-polynomial time algorithm. As a by-product of analysis, we provide new conditions to guarantee the MIR inequality to be facet-defining for the considered polyhedron and prove that in general, the problem of deciding whether an MIR inequality defines a facet is \(\mathcal{N}\mathcal{P}\)-complete. Finally, we perform numerical experiments to evaluate the performance and impact of using the proposed SL inequalities as cutting planes in solving mixed integer linear programming problems. Numerical results demonstrate that the proposed SL cuts are much more effective than the MIR cuts in terms of strengthening the problem formulation and improving the solution efficiency. Moreover, when applied to solve random and real application problems, the proposed SL cuts demonstrate the benefit in reducing the solution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Here we remark that a new stopping criterion is introduced in Chen and Dai [14] for the linear time algorithm by Pochet and Wolsey [46] and can reduce the number of iterations. The improved algorithm is then applied in Chen and Dai [14] to derive a combinatorial polynomial time algorithm for the separation problem of continuous knapsack polyhedron with divisible capacities considered in [56].

  2. By \(\frac{r}{\alpha _{\min }} \in {\mathbb {Z}}\), we have \(\frac{rk_i+r}{\alpha _{\min }} \in {\mathbb {Z}}\) for all \(i \in L\).

  3. Here rows refers to constraints or valid inequalities of an MILP problem.

References

  1. Achterberg, T.: Constraint integer programming. Ph.D. Thesis, Technische Universität Berlin (2007)

  2. Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-commodity flow structures in MIPs. Math. Program. Comput. 2(2), 125–165 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization: Festschrift for Martin Grötschel, pp. 449–481. Springer, Berlin (2013)

    MATH  Google Scholar 

  4. Agra, A., Constantino, M.F.: Lifting two-integer knapsack inequalities. Math. Program. 109(1), 115–154 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Andreello, G., Caprara, A., Fischetti, M.: Embedding \(\{0,\frac{1}{2}\}\)-cuts in a branch-and-cut framework: a computational study. Informs J. Comput. 19(2), 229–238 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Angulo, A., Espinoza, D., Palma, R.: Sequence independent lifting for mixed knapsack problems with GUB constraints. Math. Program. 154(1), 55–80 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Atamtürk, A.: Sequence independent lifting for mixed-integer programming. Oper. Res. 52(3), 487–490 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Atamtürk, A.: Cover and pack inequalities for (mixed) integer programming. Ann. Oper. Res. 139(1), 21–38 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Atamtürk, A., Günlük, O.: Mingling: mixed-integer rounding with bounds. Math. Program. 123(2), 315–338 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Atamtürk, A., Kianfar, K.: N-step mingling inequalities: new facets for the mixed-integer knapsack set. Math. Program. 132(1–2), 79–98 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Atamtürk, A., Rajan, D.: On splittable and unsplittable flow capacitated network design arc-set polyhedra. Math. Program. Ser. B 92(2), 315–333 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Caprara, A., Fischetti, M.: \(\{0,\frac{1}{2}\}\)-Chvátal–Gomory cuts. Math. Program. 74(3), 221–235 (1996)

    MATH  Google Scholar 

  13. Ceria, S., Cordier, C., Marchand, H., Wolsey, L.A.: Cutting planes for integer programs with general integer variables. Math. Program. Ser. B 81(2), 201–214 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Chen, W.-K., Dai, Y.-H.: Combinatorial separation algorithms for the continuous knapsack polyhedra with divisible capacities. Technical report (2019). https://arxiv.org/abs/1907.03162

  15. Chen, W.-K., Dai, Y.-H.: On the complexity of sequentially lifting cover inequalities for the knapsack polytope. Sci. China Math. 64(1), 211–220 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Christophel, P.M.: Separation algorithms for cutting planes based on mixed integer row relaxations. Ph.D. Thesis, Universität Paderborn, Paderborn (2009)

  17. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear programming problems. Oper. Res. 31(5), 803–834 (1983)

    MATH  Google Scholar 

  18. Dash, S., Günlük, O.: Valid inequalities based on simple mixed-integer sets. Math. Program. 105(1), 29–53 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Easton, T., Gutierrez, T.: Sequential lifting of general integer variables for integer programs. Ind. Eng. Manag 4(2), 158 (2015)

    Google Scholar 

  20. Eisenbrand, F., Laue, S.: A linear algorithm for integer programming in the plane. Math. Program. 102(2), 249–259 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Fukasawa, R.: Single-row mixed-integer programs: theory and computations. Ph.D. Thesis, Georgia Institute of Technology (2008)

  22. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H.D., Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library. Math. Program. Comput. 13(3), 443–490 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Gleixner, A., Maher, S. J., Fischer, T., Gally, T., Gamrath, G., Gottwald, R. L., Hendel, R. L., Koch, T., Lübbecke, M. E., Miltenberger, M., Müller, B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Weninger, D., Witt, J. T., Witzig, J.: The SCIP optimization suite 6.0. ZIB-Report (2018). https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6936

  24. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted cover inequalities for 0–1 integer programs: computation. Informs J. Comput. 10(4), 427–437 (1998)

    MathSciNet  Google Scholar 

  25. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Sequence independent lifting in mixed integer programming. J. Comb. Optim. 4(1), 109–129 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Hirschberg, D.S., Wong, C.K.: A polynomial-time algorithm for the knapsack problem with two variables. J. ACM 12(1), 147–154 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Hojny, C., Gally, T., Habeck, O., Lüthen, H., Matter, F., Pfetsch, M.E., Schmitt, A.: Knapsack polytopes: a survey. Ann. Oper. Res. 292(1), 469–517 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Kannan, R.: A polynomial algorithm for the two-variable integer programming problem. J. ACM 27(1), 118–122 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Kaparis, K., Letchford, A.N.: Separation algorithms for 0–1 knapsack polytopes. Math. Program. 124(1–2), 69–91 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

    MATH  Google Scholar 

  31. Kianfar, K.: On n-step MIR and partition inequalities for integer knapsack and single-node capacitated flow sets. Discret. Appl. Math. 160(10), 1567–1582 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Kianfar, K., Fathi, Y.: Generalized mixed integer rounding inequalities: facets for infinite group polyhedra. Math. Program. 120(2), 313–346 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103 (2011)

    MathSciNet  Google Scholar 

  34. Koster, A.M.C.A., Zymolka, A., Kutschka, M.: Algorithms to separate \(\{0,\frac{1}{2}\}\)-Chvátal–Gomory cuts. Algorithmica 55(2), 375–391 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Malaguti, E., Durán, R.M., Toth, P.: A metaheuristic framework for nonlinear capacitated covering problems. Optim. Lett. 10(1), 169–180 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Marchand, H., Wolsey, L.A.: The 0–1 knapsack problem with a single continuous variable. Math. Program. 85(1), 15–33 (1999)

    MathSciNet  MATH  Google Scholar 

  37. Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49(3), 363–371 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Marcotte, O.: The cutting stock problem and integer rounding. Math. Program. 33(1), 82–92 (1985)

    MathSciNet  MATH  Google Scholar 

  39. Martello, S.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990)

    MATH  Google Scholar 

  40. Martin, A.: Integer Programs with Block Structure. Ph.D. Thesis, Technische Universität Berlin (1998)

  41. Mazur, D. R.: Integer programming approaches to a multifacility location problem. Ph.D. Thesis, The Johns Hopkins University (1999)

  42. Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and independence system polyhedra. Math. Program. 6(1), 48–61 (1974)

    MathSciNet  MATH  Google Scholar 

  43. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    MATH  Google Scholar 

  44. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Program. 46(1–3), 379–390 (1990)

    MathSciNet  MATH  Google Scholar 

  45. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5(1), 199–215 (1973)

    MathSciNet  MATH  Google Scholar 

  46. Pochet, Y., Wolsey, L.A.: Integer knapsack and flow covers with divisible coefficients: polyhedra, optimization and separation. Discret. Appl. Math. 59(1), 57–74 (1995)

    MathSciNet  MATH  Google Scholar 

  47. Richard, J.-P.P., de Farias Jr, I.R., Nemhauser, G.L.: Lifted inequalities for 0–1 mixed integer programming: basic theory and algorithms. Math. Program. 98(1), 89–113 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Richard, J.-P.P., de Farias Jr, I.R., Nemhauser, G.L.: Lifted inequalities for 0–1 mixed integer programming: superlinear lifting. Math. Program. 98(1), 115–143 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Richard, J.-P.P.: Lifting techniques for mixed integer programming. In: Wiley Encyclopedia of Operations Research and Management Science (2011)

  50. Shebalov, S., Klabjan, D.: Sequence independent lifting for mixed integer programs with variable upper bounds. Math. Program. 105(2), 523–561 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Van Hoesel, S.P.M., Koster, A.M.C.A., Van De Leensel, R.L.M.J., Savelsbergh, M.W.P.: Polyhedral results for the edge capacity polytope. Math. Program. 92(2), 335–358 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Weismantel, R.: On the 0/1 knapsack polytope. Math. Program. 77(3), 49–68 (1997)

    MathSciNet  MATH  Google Scholar 

  53. Wolsey, L.A.: Faces for a linear inequality in 0–1 variables. Math. Program. 8(1), 165–178 (1975)

    MathSciNet  MATH  Google Scholar 

  54. Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Oper. Res. 24(2), 367–372 (1976)

    MathSciNet  MATH  Google Scholar 

  55. Wolsey, L.A.: Valid inequalities and superadditivity for 0–1 integer programs. Math. Oper. Res. 2(1), 66–77 (1977)

    MathSciNet  MATH  Google Scholar 

  56. Wolsey, L.A., Yaman, H.: Continuous knapsack sets with divisible capacities. Math. Program. 156(1–2), 1–20 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Wolter, K.: Implementation of cutting plane separators for mixed integer programs. Diploma thesis, Technische Universität Berlin, Berlin (2006)

  58. Yaman, H.: Formulations and valid inequalities for the heterogeneous vehicle routing problem. Math. Program. 106(2), 365–390 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Yaman, H.: The integer knapsack cover polyhedron. SIAM J. Discret. Math. 21(3), 551–572 (2007)

    MathSciNet  MATH  Google Scholar 

  60. Yaman, H., Şen, A.: Manufacturer’s mixed pallet design problem. Eur. J. Oper. Res. 186(2), 826–840 (2008)

    MATH  Google Scholar 

  61. Zemel, E.: Easily computable facets of the knapsack polytope. Math. Oper. Res. 14(4), 760–764 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the associate editor and two anonymous referees for their insightful comments that helped significantly improve the presentation of this paper. The work of W.-K. Chen was supported in part by the Chinese NSF (Grant No. 12101048) and Beijing Institute of Technology Research Fund Program for Young Scholars. The work of Y.-H. Dai was supported in part by the Chinese NSF (Grant Nos. 12021001, 11991021, 11991020, and 11971372), the National Key R &D Program of China (Grant Nos. 2021YFA1000300 and 2021YFA1000301), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA27000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hong Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: detailed computational results

Appendix: detailed computational results

See the Tables 67 and 8.

Table 6 Comparison of SL, MIR, and SL+MIR
Table 7 Comparison of SCIP and SCIP+SL
Table 8 Comparisons of different selections of parameter \(\texttt {MAXAGGR}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WK., Chen, L. & Dai, YH. Lifting for the integer knapsack cover polyhedron. J Glob Optim 86, 205–249 (2023). https://doi.org/10.1007/s10898-022-01252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01252-x

Keywords

Mathematics Subject Classification

Navigation