Skip to main content
Log in

Inverse continuous wavelet transform in Pringsheim's sense on Wiener amalgam spaces

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The inversion formula for the continuous wavelet transform is usually considered in the weak sense. In the present note we trace back the inverse wavelet transform to summability means of Fourier transforms and obtain norm and almost everywhere convergence of the inversion formula for functions from the L p and Wiener amalgam spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashurov R.: Convergence of the continuous wavelet transforms on the entire Lebesgue set of L p -functions.. Int. J. Wavelets Multiresolut. Inf. Process. 9, 675–683 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser Verlag (Basel, 1971).

  3. E. Cordero and K. A. Okoudjou, Dilation properties for weighted modulation spaces, J. Funct. Spaces Appl., pp. 29, Art. ID 145491 (2012).

  4. I. Daubechies, Ten Lectures on Wavelets, SIAM (Philadelphia, 1992).

  5. H. G. Feichtinger and F. Weisz, The Segal algebra S 0 \({(\mathbb{R}^{d})}\) and norm summability of Fourier series and Fourier transforms, Monatshefte Math., 148 (2006), 333–349.

  6. Feichtinger H.G., Weisz F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Camb. Phil. Soc. 140, 509–536 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gát Gy.: Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of trigonometric Fourier series, J. Appr. Theory. 149, 74–102 (2007)

    Article  MATH  Google Scholar 

  8. Goginava U.: The maximal operator of the Marcinkiewicz–Fejér means of d-dimensional Walsh–Fourier series, East J. Appr. 12, 295–302 (2006)

    MathSciNet  Google Scholar 

  9. L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education (New Jersey, 2004).

  10. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser (Boston, 2001).

  11. Katznelson Y.: An Introduction to Harmonic Analysis, 3th ed. Cambridge University Press, Cambridge Mathematical Library (2004)

    Book  MATH  Google Scholar 

  12. Li K., Sun W.: Pointwise convergence of the Calderon reproducing formula, J. Fourier Anal. Appl. 18, 439–455 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Marcinkiewicz J., Zygmund A.: On the summability of double Fourier series, Fund. Math. 32, 122–132 (1939)

    Google Scholar 

  14. Rao M., Sikic H., Song R.: Application of Carleson’s theorem to wavelet inversion, Control Cybern. 23, 761–771 (1994)

    MATH  MathSciNet  Google Scholar 

  15. Simon P.: (C, α) summability of Walsh–Kaczmarz–Fourier series, J. Appr. Theory 127, 39–60 (2004)

    Article  MATH  Google Scholar 

  16. Sugimoto M., Tomita N.: The dilation property of modulation spaces and their inclusion relation with besov spaces, J. Functional Analysis 248, 79–106 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers (Dordrecht, Boston, London, 2004).

  18. F. Weisz, Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications, Kluwer Academic Publishers (Dordrecht, Boston, London, 2002).

  19. F. Weisz, Summability of multi-dimensional trigonometric Fourier series, vol. 7, Surveys in Approximation Theory (2012).

  20. Weisz F.: Inversion formulas for the continuous wavelet transform, Acta Math. Hungar. 138, 237–258 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Weisz F.: Pointwise convergence in Pringsheim’s sense of the summability of Fourier transforms on Wiener amalgam spaces, Monatshefte Math. 175, 143–160 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Wilson, Weighted Littlewood–Paley Theory and Exponential-Square Integrability, Lecture Notes in Mathematics, vol. 1924, Springer (Berlin, 2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Weisz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisz, F. Inverse continuous wavelet transform in Pringsheim's sense on Wiener amalgam spaces. Acta Math. Hungar. 145, 392–415 (2015). https://doi.org/10.1007/s10474-015-0492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-015-0492-y

Key words and phrases

Mathematics Subject Classification

Navigation