Skip to main content
Log in

Inversion formulas for the continuous wavelet transform

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The inversion formula for the continuous wavelet transform is usually considered in the weak sense. In the present note we investigate the norm and a.e. convergence of the inversion formula in L p and Wiener amalgam spaces. The summability of the inversion formula is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser Verlag (Basel, 1971).

    Book  MATH  Google Scholar 

  2. L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135–157.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Daubechies, Ten Lectures on Wavelets, SIAM (Philadelphia, 1992).

    Book  MATH  Google Scholar 

  4. C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc., 77 (1971), 744–745.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. G. Feichtinger and F. Weisz, Inversion formulas for the short-time Fourier transform, J. Geom. Anal., 16 (2006), 507–521.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. G. Feichtinger and F. Weisz, The Segal algebra S 0(ℝd) and norm summability of Fourier series and Fourier transforms, Monatshefte Math., 148 (2006), 333–349.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. G. Feichtinger and F. Weisz, Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Camb. Phil. Soc., 140 (2006), 509–536.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. G. Feichtinger and F. Weisz, Gabor analysis on Wiener amalgams, Sampl. Theory Signal Image Process, 6 (2007), 129–150.

    MathSciNet  MATH  Google Scholar 

  9. L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education (New Jersey, 2004).

    MATH  Google Scholar 

  10. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser (Boston, 2001).

    MATH  Google Scholar 

  11. K. Gröchenig and C. Heil, Gabor meets Littlewood–Paley: Gabor expansions in L p(R d), Studia Math., 146 (2001), 15–33.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Gröchenig, C. Heil and K. Okoudjou, Gabor analysis in weighted amalgam spaces, Sampl. Theory Signal Image Process, 1 (2002), 225–259.

    MathSciNet  MATH  Google Scholar 

  13. C. Heil, An introduction to weighted Wiener amalgams, in: M. Krishna, R. Radha, and S. Thangavelu (Eds.) Wavelets and their Applications, Allied Publishers Private Limited (2003), pp. 183–216.

    Google Scholar 

  14. S. E. Kelly, M. A. Kon and L. A. Raphael, Local convergence for wavelet expansions, J. Func. Anal., 126 (1994), 102–138.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. E. Kelly, M. A. Kon and L. A. Raphael, Pointwise convergence of wavelet expansions, Bull. Amer. Math. Soc., 30 (1994), 87–94.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Li and W. Sun, Pointwise convergence of the Calderon reproducing formula, J. Fourier Anal. Appl. (to appear).

  17. M. Rao, H. Sikic and R. Song, Application of Carleson’s theorem to wavelet inversion, Control Cybern., 23 (1994), 761–771.

    MathSciNet  MATH  Google Scholar 

  18. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press (Princeton, N.J., 1971).

    MATH  Google Scholar 

  19. R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers (Dordrecht, Boston, London, 2004).

    Book  MATH  Google Scholar 

  20. F. Weisz, Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications, Kluwer Academic Publishers (Dordrecht, Boston, London, 2002).

    Google Scholar 

  21. F. Weisz, Wiener amalgams, Hardy spaces and summability of Fourier series, Math. Proc. Camb. Phil. Soc., 145 (2008), 419–442.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Weisz, 1-summability of d-dimensional Fourier transforms, Constr. Approx., 34 (2011), 421–452.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Weisz, Marcinkiewicz-summability of more-dimensional Fourier transforms and Fourier series, J. Math. Anal. Appl., 379 (2011), 910–929.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Wilson, Weighted Littlewood–Paley Theory and Exponential-Square Integrability, Lecture Notes in Mathematics 1924, Springer (Berlin, 2008).

    MATH  Google Scholar 

  25. M. Wilson, How fast and in what sense(s) does the Calderon reproducing formula converge?, J. Fourier Anal. Appl., 16 (2010), 768–785.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Zygmund, Trigonometric Series, 3rd ed., Cambridge University Press (London, 2002).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Weisz.

Additional information

The project is supported by the European Union and co-financed by the European Social Fund (grant agreement no. TAMOP 4.2.1/B-09/1/KMR-2010-0003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisz, F. Inversion formulas for the continuous wavelet transform. Acta Math Hung 138, 237–258 (2013). https://doi.org/10.1007/s10474-012-0263-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-012-0263-y

Key words and phrases

Mathematics Subject Classification

Navigation