Skip to main content
Log in

1-Summability of d-Dimensional Fourier Transforms

  • Published:
Constructive Approximation Aims and scope

Abstract

A general summability method of more-dimensional Fourier transforms is given with the help of a continuous function θ. Under some weak conditions on θ we show that the maximal operator of the 1θ-means of a tempered distribution is bounded from H p (ℝd) to L p (ℝd) for all d/(d+α)<p≤∞ and, consequently, is of weak type (1,1), where 0<α≤1 depends only on θ. As a consequence we obtain a generalization of the one-dimensional summability result due to Lebesgue, more exactly, the 1θ-means of a function fL 1(ℝd) converge a.e. to f. Moreover, we prove that the 1θ-means are uniformly bounded on the spaces H p (ℝd), and so they converge in norm (d/(d+α)<p<∞). Similar results are shown for conjugate functions. Some special cases of the 1θ-summation are considered, such as the Weierstrass, Picar, Bessel, Fejér, de La Vallée-Poussin, Rogosinski, and Riesz summations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berens, H., Xu, Y.: l-1 summability of multiple Fourier integrals and positivity. Math. Proc. Camb. Philos. Soc. 122, 149–172 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berens, H., Li, Z., Xu, Y.: On l-1 Riesz summability of the inverse Fourier integral. Indag. Math. 12, 41–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces, an Introduction. Springer, Berlin (1976)

    MATH  Google Scholar 

  4. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation. Birkhäuser, Basel (1971)

    MATH  Google Scholar 

  5. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colzani, L., Taibleson, M.H., Weiss, G.: Maximal estimates for Cesàro and Riesz means on spheres. Indiana Univ. Math. J. 33, 873–889 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, K.M., Chang, Y.-C.: Lectures on Bochner-Riesz Means. London Mathematical Society Lecture Note Series, vol. 114. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  8. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)

    MATH  Google Scholar 

  9. Fefferman, C.: On the convergence of multiple Fourier series. Bull. Am. Math. Soc. 77, 744–745 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feichtinger, H.G., Weisz, F.: The Segal algebra S 0(ℝd) and norm summability of Fourier series and Fourier transforms. Monatshefte Math. 148, 333–349 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feichtinger, H.G., Weisz, F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Camb. Philos. Soc. 140, 509–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, New Jersey (2004)

    MATH  Google Scholar 

  13. Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  14. Marcinkiewicz, J.: Sur une méthode remarquable de sommation des séries doubles de Fourier. Ann. Sc. Norm. Super. Pisa 8, 149–160 (1939)

    MATH  Google Scholar 

  15. Marcinkiewicz, J., Zygmund, A.: On the summability of double Fourier series. Fundam. Math. 32, 122–132 (1939)

    Google Scholar 

  16. Podkorytov, A.M.: Summation of multiple Fourier series over polyhedra. Vestn. Leningr. Univ., Math. 13, 69–77 (1981)

    MATH  Google Scholar 

  17. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Univ. Press, Princeton (1993)

    MATH  Google Scholar 

  18. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton (1971)

    MATH  Google Scholar 

  19. Szili, L., Vértesi, P.: On uniform convergence of sequences of certain linear operators. Acta Math. Hung. 91, 159–186 (2001)

    Article  MATH  Google Scholar 

  20. Szili, L., Vértesi, P.: On multivariate projection operators. J. Approx. Theory 159, 154–164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Trigub, R.M., Belinsky, E.S.: Fourier Analysis and Approximation of Functions. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  22. Weisz, F.: Triangular summability of two-dimensional Fourier transforms. Preprint

  23. Weisz, F.: A generalization for Fourier transforms of a theorem due to Marcinkiewicz. J. Math. Anal. Appl. 252, 675–695 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weisz, F.: Summability of Multi-dimensional Fourier Series and Hardy Spaces. Mathematics and Its Applications. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  25. Weisz, F.: Wiener amalgams, Hardy spaces and summability of Fourier series. Math. Proc. Camb. Philos. Soc. 145, 419–442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, Y.: Christoffel functions and Fourier series for multivariate orthogonal polynomials. J. Approx. Theory 82, 205–239 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhizhiashvili, L.: Trigonometric Fourier Series and their Conjugates. Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  28. Zygmund, A.: Trigonometric Series, 3rd edn. Cambridge University Press, London (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Weisz.

Additional information

Communicated by Karlheinz Groechenig.

This research was supported by the Hungarian Scientific Research Funds (OTKA) No K67642.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisz, F. 1-Summability of d-Dimensional Fourier Transforms. Constr Approx 34, 421–452 (2011). https://doi.org/10.1007/s00365-011-9128-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-011-9128-9

Keywords

Mathematics Subject Classification (2000)

Navigation