Skip to main content
Log in

Abstract

Equilibrium logic is a general purpose nonmonotonic reasoning formalism closely aligned with answer set programming (ASP). In particular it provides a logical foundation for ASP as well as an extension of the basic syntax of answer set programs. We present an overview of equilibrium logic and its main properties and uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anger, C., Linke, M.T., Neumann, A., Schaube, T.: The nomore++ System. In: Baral, C., et al. (eds.) Proc. LPNMR 2005, LNAI, pp. 422–426. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  2. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Log. J. IGPL 7(4), 447–480 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balduccini, M., Gelfond, M., Noguiera, M.: A-Prolog as a tool for declarative programming. In: Proc. 12th Int. Conf. on Software Engineering and Knowledge Engineering, SEKE 2000, Chicago, IL (2000)

  4. Balduccini, M., Gelfond, M., Noguiera, M.: The USA-Advisor: a case study in answer set planning. Logic Programming and Nonmonotonic Reasoning, LPNMR 2001, LNAI 2173, Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  5. Baral, C.: Knowlewdge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, UK (2003)

    Google Scholar 

  6. Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of the Twentieh National Conference on Artificial Intelligence. AAAI, Menlo Park, California

  7. Bonner, A., McCarty, L.T.: Adding negation-as-failure to intuitionistic logic programming. In: Proc NorthAmerican Conference on Logic Programming, pp. 681–703 MIT, Cambridge, Massachusetts (1990)

    Google Scholar 

  8. Cabalar, P., Odintsov, S., Pearce, D.: A logic for reasoning about well-founded semantics: preliminary report. In: Marín, R. et al (eds.) CAEPIA: Actas, Volumen 1: 183–192 Santiago de Compostela, Spain (2005)

    Google Scholar 

  9. Cabalar, P., Odintsov, S., Pearce, D.: Logical foundations of well-founded semantics. In: Proc. KR ’06, Lake District, UK (2006)

  10. Cabalar, P., Odintsov, S., Pearce, D.: Strong negation in well-founded and partial stable semantics for logic programs. In: Proc. Iberamia 06, LNAI, Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  11. Cabalar, P., Odintsov, S., Pearce, D., Valverde, A.: On the Logic and Computation of Partial Equilibrium Models. Proc. Jelia 06, LNAI, Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  12. Cabalar, P., Odintsov, S., Pearce, D., Valverde, A.: Analysing and extending well-founded and partial stable semantics using partial equilibrium logic. Proc. ICLP 06, LNAI, Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  13. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilibrium logic to logic programs. In: Bento, C. et al (eds.) Proceedings EPIA, LNAI 3808, pp. 4–17, Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  14. Calimeri, F., Galizia, S., Rullo F., Calimeri, S., Galizia, M., Ruffolo, P.: Enhancing disjunctive logic programming for ontology specification. Proceedings AGP 2003 (2003)

  15. van Dalen, D.: Intuitionistic logic. In: Handbook of Philosophical Logic, Volume III: Alternatives to Classical logic, D. Reidel, Dordrecht (1986)

    Google Scholar 

  16. van Dantzig, D.: On the principles of intuitionistic and affirmative mathematics. Indag. Math. 9, 429–440; 506–517 (1947)

    Google Scholar 

  17. Dietrich, J.: Deductive bases of nonmonotonic inference operations. NTZ Report, University of Leipzig, Germany (1994)

  18. Dietrich, J.: Inferenzframes. Doctoral dissertation, University of Leipzig (1995)

  19. Dix, J.: A classification-theory of semantics of normal logic programs. I. strong properties. Fundam. Inform. 22(3), 227–255 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Dix, J.: A classification-theory of semantics of normal logic programs. II. weak properties. Fundam. Inform. 22(3), 257–288 (1995)

    MATH  MathSciNet  Google Scholar 

  21. Došen, K.: Negation as a modal operator. Rep. Math. Log. 20, 15–27 (1986)

    MATH  Google Scholar 

  22. Dummett, M.: Elements of Intuitionism. Clarendon, Oxford (1977)

    MATH  Google Scholar 

  23. Dung, P.M.: Declarative semantics of hypothetical logic programing with negation as failure. In: Proceedings ELP 92, 99. 45–58 (1992)

  24. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics. In: Int Conf. in Logic Programming, ICLP’03, Mumbay, India. Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  25. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemela, I. (eds.) Proceedings LPNMR 2004, LNAI 2923, Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  26. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in answer set programming. Proceedings AAAI 2005, Pittsburg, Pennsylvannia 2005

  27. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 97–102. Professional Book Center, Colorado (2005)

    Google Scholar 

  28. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) Logics In Artificial Intelligence. Proceedings JELIA’04, LNAI 3229, pp. 200–212. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  30. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theor. Pract. Log. Prog. 5, 45–74 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ferraris, P.: Answer sets for propositional theories. In: Baral, C. et al (eds.) Proceedings on Logic Programming and Nonmonotonic Reasoning 05, LNAI 3662, Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  32. Gelfond, M.: Logic programming and reasoning with incomplete information. Ann. Math. Artif. Intell. 12, 98–116 (1994)

    Article  MathSciNet  Google Scholar 

  33. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programs. In: Bowen, K., Kowalski, R. (eds.) Proc 5th Int Conf on Logic Programming 2, pp. 1070–1080. MIT, Cambridge, Massachusetts (1988)

    Google Scholar 

  34. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi, P. (eds.) Proc ICLP-90, pp. 579–597. MIT, Cambridge, Massachusetts (1990)

    Google Scholar 

  35. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput., 365–387 (1991)

  36. Giordano, L., Olivetti, N.: Combining negation-as-failure and embedded implications in logic programs. J. Log. Program. 36, 91–147 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften Wien, mathematisch, naturwissenschaftliche Klasse. 69, 65–66 (1932)

    MATH  Google Scholar 

  38. Greco, S., Leone, N., Scarcello.: Datalog with nested rules. In: Dix, J., et al (eds.) Proceedings on Logic Programming and Knowledge Representation 1997, Port Jefferson, New York, LNCS 1471, pp. 52–65. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  39. Gurevich, Y.: Intuitionistic logic with strong negation. Stud. Log. 36(1–2), 49–59 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics. In: Börger, Egon, Kleine Büning, Hans, Richter, Michael M., Schönfeld, Wolfgang (eds.) Selected papers from Computer Science Logic, CSL’90, Heidelberg, Germany. Lect. Notes Comput. Sci., 533, 248–260. Springer, Berlin Heidelberg New York (1991)

  41. Hähnle, R.: Automated Deduction in Multiple-valued Logics. Oxford University Press, London, UK (1993)

    MATH  Google Scholar 

  42. Heyting, A.: Die formalen regeln der intuitionistischen logik. Sitz.ber. Preuss. Akad. Wiss., Phys. Math. Kl., 42–56 (1930)

  43. Hosoi, T.: The axiomatization of the intermediate propositional systems S n of Gödel. J. Coll. Sci., Imp. Univ. Tokyo 13, 183–187 (1966)

    MATH  MathSciNet  Google Scholar 

  44. Inoue, K., Sakama, C.: Equivalence in abductive logic. In: Proceedings IJCAI 2005. Edinburg, Scotland (2005)

  45. De Jongh, D., Hendricks, L.: Characterization of strongly equivalent logic programs in intermediate logics. Theor. Pract. Log. Prog. 3(3), 259–270 (2003)

    Article  MATH  Google Scholar 

  46. Janhunen, T., Niemelä, I., Simons, P., You, J.-H.: Unfolding partiality and disjunctions in stable model semantics. ACM Trans. Comput. Log. (TOCL) 7(1), 1–37 (2006)

    Article  Google Scholar 

  47. Kleine-B§ning, H., Karpinski,M., FlŽgel, A.: Resolution for Quantified Boolean Formulas. Inf. Comput. 117, 12–18 (1995)

    Article  Google Scholar 

  48. Kracht, M.: On extensions of intermediate logics by strong negation. J. Philos. Logic 27(1), 49–73 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  50. Leone, N., et al.: Data integration: a challenging ASP application. In: Baral, C., et al (eds.) Proc. LPNMR 2005, Diamante, Italy. LNAI, pp. 379–383, Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  51. Leone, N., Pfeifer, G.W., Faber, T., Eiter, G., Gottlob, Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. CoRR: cs.AI/0211004, September, 2003

  52. Lierler, Y. CMODELS – SAT-based disjunctive answer set solver. In: Baral, C., et al (eds.) Proc. LPNMR 2005, Diamante, Italy. LNAI, pp. 447–451 Springer, Berlin Heidelberg NewYork (2005)

    Google Scholar 

  53. Lifschitz, V.: Foundations of logic programming. In: Brewka, G. (ed.) Principles of Knowledge Representation, pp. 69–128. CSLI, Stanford, California (1996)

    Google Scholar 

  54. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  55. Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif. Intell. 25(3-4), 369–389 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  56. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical propositional logic. In: Proc. KR’02. pp. 170–176, Toulouse, France.

  57. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1–2), 115–137 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  58. Łukasiewicz, J.: Die Logik und das Grundlagenproblem. In: Les Entreties de Zürich sur les Fondaments et la Méthode des Sciences Mathématiques 12, 6–9 (1938), Zürich, 82–100 (1941)

  59. McCarty, L.T.: Clausal intuitionistic logic I. J. Log. Program. 5, 1–31 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  60. Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., et al (eds.) Nonmonotonic reasoning. LNAI 346, Springer, Berlin Heidelberg New York (1989)

    Google Scholar 

  61. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D., et al (eds.) Handbook of Logic in Artificial Intelligence. Clarendon, Oxford (1994)

    Google Scholar 

  62. Maksimova, L.: Craig’s interpolation theorem and amalgamable varieties. Doklady Akademii Nauk SSSR, 237, no.6, 1281–1284 (1977) (Translated as Soviet Math. Doklady.)

  63. Miller, D.: Logical analysis of modules in logic programming. J. Log. Program. 6, 79–108 (1989)

    Article  MATH  Google Scholar 

  64. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theor. Comp. Sci. 52(1-2), 145–153 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  65. Nelson, D.: Constructible falsity. J. Symb. Log. 14, 16–26 (1949)

    Article  MATH  Google Scholar 

  66. Odintsov, S., Pearce, D.: A logic for reasoning about paraconsistent answer sets. Proc. LPNMR 2005, Diamante, Italy, LNAI, pp. 343–355. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  67. Ojeda, M.P., de Guzmán, I., Aguilera, G., Valverde, A.: Reducing signed propositional formulas. Soft Comput. 2(4), 157–166 (1998)

    Google Scholar 

  68. Ono, H.: Model extension theorem and Craig’s interpolation theorem for intermediate predicate logics. Rep. Math. Log. 15, 41–58 (1983)

    MATH  Google Scholar 

  69. Ortiz, M., Osorio, M.: Nelson’s strong negation, safe beliefs and the answer set semantics. In: De Vos, M., Provetti, A. (eds.) ASP 2005 Workshop Proceedings, Bath, UK (2005)

    Google Scholar 

  70. Osorio, M., Navarro, J., Arrazola, J.: Equivalence in answer set programming. In: Proc. LOPSTR 2001, Paphos, Cyprus. LNCS 2372, pp. 57–75. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  71. Osorio, M., Navarro Pérez, J.A., Arrazola, J.: Safe beliefs for propositional theories. Ann. Pure Appl. Logic. 134(1), 63–82 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  72. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, Massachusetts (1994)

    MATH  Google Scholar 

  73. Pearce, D.: Answer Sets and Nonmonotonic S4. In: Dyckoff, R. (ed.) Extensions of Logic Programming Proc 4th Int Workshop, LNAI798, Springer, Berlin Heidelberg New York (1994)

    Google Scholar 

  74. Pearce, D.: Nonmonotonicity and Answer Set Inference. In: Proc. LPNMR 1995, LNAI 928, pp. 372–387, Springer, Berlin Heidelberg New York (1995)

    Google Scholar 

  75. Pearce, D.: A new logical characterisation of stable models. In: Proceedings Non-Monotonic Extensions of Logic Programming, NMELP 96, Bad Honnef, Germany (1996)

    Google Scholar 

  76. Pearce, D.: A new logical characterisation of stablemodels and answer sets. In: Non-Monotonic Extensions of Logic Programming, NMELP 96, Bad Honnef, Germany. LNCS 1216, pp. 57–70. Springer, Berlin Heidelberg New York (1997)

    Chapter  Google Scholar 

  77. Pearce, D.: From here to there: stable negation in logic programming. In: Gabbay, D., Wansing, H. (eds.) What is negation? Kluwer, Norwell (1999)

    Google Scholar 

  78. Pearce, D.: Stable inference as intuitionistic validity. J. Log. Program. 38, 79–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  79. Pearce, D.: Simplifying logic programs under answer set semantics. Demoen, B., Lifschtiz, V. (eds.) Proceedings of ICLP04, LNCS 3132, pp. 210–224. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  80. Pearce, D., de Guzmán, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In: Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2000, LNAI 1847, pp. 352–367. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  81. Pearce, D., de Guzmán, I.P., Valverde, A.: Computing equilibrium models using signed formulas. In: Lloyd, John W., et al (eds.) Computational Logic – CL 2000, First International Conference. Proceedings, LNAI 1861, pp. 688–702. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  82. Pearce, D. Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic programs with nested expressions. In: Proceedings EPIA ’01, LNAI , pp. 306–320. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  83. Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A polynomial translation of logic programs with nested expressions into disjunctive logic programs: preliminary report. In: P. J. Stuckey (ed.) Logic Programming, 18th International Conference, ICLP 2002, Lect. Notes Comput. Sci. 2401, pp. 405–420. Springer, Berlin Heidelberg New York 200

  84. Pearce, D., Valverde, A.: Uniform equivalence for equilibrium logic and logic programs. Lifschitz, V., NiemelŁ, I. (eds.) Proceedings of LPNMR’04 , LNAI 2923, pp. 194–206. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  85. Pearce, D., Valverde, A.: Synonymous theories in answer set programming and equilibrium logic. López de Mántaras, R., Saitta, L. (eds.) Proceedings ECAI 2004, Nieuwe Hemweg, Amsterdam. pp. 388–392. IOS Press, Nieuwe Hemweg, Amsterdam (2004)

    Google Scholar 

  86. Pearce, D., Valverde, A.: A first-order nonmonotonic extension of constructive logic. Stud. Log. 80, 246–321 (2005)

    Article  MathSciNet  Google Scholar 

  87. Pereira, L.M., Alferes, J.J.: Well founded semantics for logic programs with explicit negation. In: Neumann, B. (ed.) European Conference on Artificial Intelligence, pp. 102–106. Wiley, New York (1992)

    Google Scholar 

  88. Przymusinski, T.: Stable semantics for disjunctive programs. New. Gener. Comput. 9, 401–424 (1991)

    Article  MATH  Google Scholar 

  89. Sakama, C.: Inverse entailment in nonmonotonic logic programs. In: Proceedings of the 10th International Conference on Inductive Logic Programming (ILP-2000), LNAI 1866, pp. 209–224, Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  90. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J. Log. Comput. 5, 265–285 (1995)

    MATH  MathSciNet  Google Scholar 

  91. Sakama, C., Inoue, K.: Inductive equivalence of logic programs Proceedings ILP 05 Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  92. Sarsakov, V., Schaub, T., Tompits, H.,Woltran, S.: nlp: A Compiler for Nested Logic Programming. In: Proceedings of LPNMR 2004, LNAI 2923, pp. 361–364. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  93. Seipel, D.: Using clausal deductive databases for defining semantics in disjunctive deductive databases. Ann. Math. Artif. Intell. 33, 347–378 (2001)

    Article  MathSciNet  Google Scholar 

  94. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)

    Article  MATH  Google Scholar 

  95. Truszczyński, M.: Strong and uniform equivalence of nonmonotonic theories: an algebraic approach. In: Proceedings KR 2006, AAAI, Menlo Park, California (2006)

    Google Scholar 

  96. Turner, H.: Strong equivalence for logic programs and default theories (made easy). In: Proc. of the Logic Programming and Nonmonotonic Reasoning, LPNMR’01, LNAI 2173, pp. 81–92. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  97. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theor. Prac. Log. Prog. 3, 609–622 (2003)

    Article  MATH  Google Scholar 

  98. Turner, H.: Strong equivalence for causal theories. In: Lifschitz, V., Niemelä, I. (eds.) Proc. of the Logic Programming and Nonmonotonic Reasoning, LPNMR’04, LNAI 2923 pp. 289–301. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  99. Vakarelov, D.: Notes on N-lattices and constructive logic with strong nxegation. Stud. Log. 36(1–2), 109–125 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  100. Valverde, A.: tabeql: A tableau based suite for equilibrium logic. Alferes, J.J., Leite, J. (eds.) Logics in Artificial Intelligence, Proc. JELIA 2004, LNAI 3229, pp. 734–737, Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  101. Vorob’ev, N.N.: A constructive propositional calculus with strong negation (in Russian). Dokl. Akad. Nauk SSSR 85, 465–468 (1952)

    MathSciNet  Google Scholar 

  102. Vorob’ev, N.N.: The problem of deducibility in constructive propositional calculus with strong negation (in Russian). Dokl. Akad. Nauk SSSR 85, 689–692 (1952)

    MathSciNet  Google Scholar 

  103. Wang, K., Zang.: Nested epistemic logic programs. In: Baral, C., et al (eds.), Proc. LPNMR 2005, LNAI 3229, pp. 279–290, Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  104. Woltran, S.: Quantified boolean formulas – from theory to practice. Dissertation, Technische Universität Wien, Institut für Informationssysteme (2003)

  105. Woltran, S.: Characterizations for relativized notions of equivalence in answer set programming. In: Alferes, J.J., Leite, J. (eds.) Logics in Artificial Intelligence, Proc. JELIA 2004, LNAI 3229, Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pearce.

Additional information

Partially supported by CICyT project TIC-2003-9001-C02, URJC project PPR-2003-39 and WASP (IST-2001-37004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, D. Equilibrium logic. Ann Math Artif Intell 47, 3–41 (2006). https://doi.org/10.1007/s10472-006-9028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-006-9028-z

Keywords

Mathematics Subject Classifications (2000)

Navigation