Skip to main content
Log in

The effects of symmetry breaking on the dynamics of a simple autonomous jerk circuit

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

We investigate the dynamics of a simple jerk circuit where the symmetry is broken by forcing a dc voltage. The analysis shows that with a zero forcing dc voltage, the system displays a perfect symmetry and develops rich dynamics including period doubling, merging crisis, hysteresis, and coexisting multiple (up to six) symmetric attractors. In the presence of a non-zero forcing dc voltage, several unusual and striking nonlinear phenomena occur such as coexisting bifurcation branches, hysteresis, asymmetric double scroll strange attractors, and multiple coexisting asymmetric attractors for some appropriate sets of system parameters. In the latter case, different combinations of attractors are depicted consisting for instance of two, three, four, or five disconnected periodic and chaotic attractors depending solely on the choice of initial conditions. The investigations are carried out by using standard nonlinear analysis tools such as Lyapunov exponent plots, bifurcation diagrams, basins of attraction, and phase space trajectory plots. The theoretical results are checked experimentally and a very good agreement is found between theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Lauterbach, R. (1996). Symmetry breaking in dynamical systems. In H. W. Broer, S. A. van Gils, I. Hoveijn, & F. Takens (Eds.), Nonlinear dynamical systems and chaos. Progress in nonlinear differential equations and their applications (Vol. 19). Basel: Birkhäuser.

    Google Scholar 

  2. Guyard, F., & Lauterbach, R. (1999). Forced symmetry breaking: Theory and applications. In M. Golubitsky, D. Luss, & S. H. Strogatz (Eds.), Pattern formation in continuous and coupled systems. The IMA volumes in mathematics and its applications (Vol. 115). New York, NY: Springer.

    MATH  Google Scholar 

  3. Letellier, C., & Gilmore, R. (2007). Symmetry groups for 3D dynamical systems. Journal of Physics A: Mathematical and Theoretical,40, 5597–5620.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sprott, J. C. (2014). Simplest chaotic flows with involutional symmetries. International Journal of Bifurcation and Chaos,24(1), 1450009.

    Article  MathSciNet  MATH  Google Scholar 

  5. Denisov, S., Klafter, J., & Urbakh, M. (2002). Manipulation of dynamical systems by symmetry breaking. Physical Review E,66, 046203.

    Article  Google Scholar 

  6. Kahllert, C. (1993). The effects of symmetry breaking in Chua’s circuit and related piecewise-linear dynamical systems. International Journal of Bifurcation and Chaos,3(4), 963–979.

    Article  MathSciNet  Google Scholar 

  7. Dana, S. K., Chakraborty, S., & Ananthakrishna, G. (2005). Homoclinic bifurcation in Chua’s circuit. Pramana Journal of Physics,64(3), 44344.

    Article  Google Scholar 

  8. Cao, H., Seoane, J. M., & Sanjuan, M. A. F. (2007). Symmetry-breaking analysis for the general Helmholz–Duffing oscillator. Chaos, Solitons and Fractals,34, 197–212.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, P., & Cao, H. (2007). The effects of symmetry breaking on the parameterically excited pendulum. Chaos, Solitons and Fractals,38, 590–597.

    Article  MathSciNet  MATH  Google Scholar 

  10. Sofroniou, A., & Bishop, S. R. (2006). Breaking the symmetry of the parametrically excited pendulum. Chaos, Solitons and Fractals,28, 673–681.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bishop, S. R., Sofroniou, A., & Shi, P. (2005). Symmetry-breaking in the response of the parameterically excited pendulum model. Chaos, Solitons and Fractals,25(2), 27–264.

    Article  MATH  Google Scholar 

  12. Rynio, R., & Okninski, A. (1998). Symmetry breaking and fractal dependence on initial conditions in dynamical systems: ordinary differential equations of thermal convection. Chaos, Solitons and Fractals,9(10), 1723–1732.

    Article  MathSciNet  MATH  Google Scholar 

  13. Henrich, M., Dahms, T., Flunkert, V., Teitsworth, S. W., & Scholl, E. (2010). Symmetry breaking transitions in networks of nonlinear circuits elements. New Journal of Physics,12, 113030.

    Article  Google Scholar 

  14. Cao, H., & Jing, Z. (2001). Chaotic dynamics of Josephson equation driven by constant and ac forcings. Chaos, Solitons and Fractals,12, 1887–1895.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kengne, J., Njitacke, Z. T., Nguomkam Negou, A., Fouodji Tsotsop, M., & Fotsin, H. B. (2015). Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. International Journal of Bifurcation and Chaos,25(4), 1550052.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sprott, J. C. (2010). Elegant chaos: Algebraically simple flow. Singapore: World Scientific Publishing.

    Book  MATH  Google Scholar 

  17. Sprott, J. C. (2011). A new chaotic jerk circuit. IEEE Transactions on Circuits and Systems II: Express Briefs,58, 240–243.

    Article  Google Scholar 

  18. Louodop, P., Kountchou, M., Fotsin, H., & Bowong, S. (2014). Practical finite-time synchronization of jerk systems: Theory and experiment. Nonlinear Dynamics,78, 597–607.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kengne, J., & Mogue, R. L. T. (2018). Dynamic analysis of a novel jerk system with composite tanh-cubic nonlinearity: chaos, multi-scroll, and multiple coexisting attractors. International Journal of Dynamics and Control. https://doi.org/10.1007/s40435-018-0444-9.

    Article  Google Scholar 

  20. Kengne, J., Folifack Signing, V. R., Chedjou, J. C., & Leutcho, G. D. (2017). Nonlinear behavior of a novel chaotic jerk system: Antimonotonicity, crises, and multiple coexisting attractors. International Journal of Dynamics and Control,6, 468–485. https://doi.org/10.1007/s40435-017-0318-6.

    Article  MathSciNet  Google Scholar 

  21. Kengne, J., Njitacke, Z. T., & Fotsin, H. B. (2016). Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dynamics,83, 751–765.

    Article  MathSciNet  Google Scholar 

  22. Kengne, J., Njikam, S. M., & Folifack, V. R. (2018). A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity. Chaos, Solitons and Fractals,106, 201–213.

    Article  MathSciNet  MATH  Google Scholar 

  23. Njitacke, Z. T., Kengne, J., Fotsin, H. B., Nguomkam Negou, A., & Tchiotsop, D. (2016). Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bridge-based Jerk circuit. Chaos, Solitons and Fractals,91, 180–197.

    Article  MATH  Google Scholar 

  24. Leutcho, G. D., & Kengne, J. (2018). A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos, Solitons and Fractals,113, 275–293.

    Article  MathSciNet  Google Scholar 

  25. Kirk, V., & Rucklidge, A. M. (2008). The effects of symmetry breaking on the dynamics near a structural heteroclinic cycle between equilibria and periodic orbit. Dynamical Systems: An International Journal,23(1), 43–74.

    Article  MathSciNet  MATH  Google Scholar 

  26. Pisarchik, A. N., Jaimes-Reategui, R., & Garcia-Vellisca, M. A. (2018). Asymmetry in electrical coupling between neurons alters multistable firing behavior. Chaos,28, 033605.

    Article  MathSciNet  Google Scholar 

  27. Porter, J., & Knobloch, E. (2005). Dynamics in the 1:2 spatial resonance with broken reflection symmetry. Physica D,201, 318–344.

    Article  MathSciNet  MATH  Google Scholar 

  28. Lauterbach, R., & Robert, R. (1992). Heteroclinic cycles in dynamical systems with broken spherical symmetry. Journal of Differential Equations,100, 22–48.

    Article  MathSciNet  MATH  Google Scholar 

  29. Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2012). A chaotic circuit based on Hewlett-Packard memristor. Chaos,22, 023136.

    Article  MathSciNet  MATH  Google Scholar 

  30. Hanias, M. P., Giannaris, G., & Spyridakis, A. R. (2006). Time series analysis in chaotic diode resonator circuit. Chaos, Solitons and Fractals,27, 569.

    Article  MATH  Google Scholar 

  31. Sukov, D. W., Bleich, M. E., Gauthier, J., & Socolar, J. E. S. (1997). Controlling chaos in a fast diode resonator using extended time-delay auto-synchronization: Experimental observations and theoretical analysis. Chaos,7(4), 560–576.

    Article  Google Scholar 

  32. Li, C., & Sprott, J. C. (2013). Amplitude control approach for chaotic signals. Nonlinear Dynamics,73, 1335–1341.

    Article  MathSciNet  MATH  Google Scholar 

  33. Argyris, J., Faust, G., & Haase, M. (1994). An exploration of chaos. Amsterdam: North-Holland.

    MATH  Google Scholar 

  34. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Reading: Addison-Wesley.

    Google Scholar 

  35. Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics: Analytical, computational and experimental methods. New York: Wiley.

    Book  MATH  Google Scholar 

  36. Kuznetsov, Y. A. (1995). Elements of applied bifurcation theory. New York: Springer.

    Book  MATH  Google Scholar 

  37. Jafari, A., Mliki, E., Akgul, A., Pham, V. T., Kingni, S. T., Wang, X., et al. (2017). Chameleon: The most hidden chaotic flow. Nonlinear Dynamics,88(3), 2303–2317.

    Article  MathSciNet  Google Scholar 

  38. Jafari, S., Sportt, J. C., & Nazarimehr, F. (2015). Recent new examples of hidden attractors. The European Physical Journal Special Topics,224, 1469–1476.

    Article  Google Scholar 

  39. Kuznetsov, N. V., Leonov, G. A., Yuldashev, M. V., & Yuldashev, R. V. (2017). Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Communications in Nonlinear Science and Numerical Simulation,51, 39–49.

    Article  Google Scholar 

  40. Leonov, G., Kuznetsov, N., & Vagaitsev, V. (2012). Hidden attractor in smooth Chua systems. Physica D: Nonlinear Phenomena,241(18), 1482–1486.

    Article  MathSciNet  MATH  Google Scholar 

  41. Leonov, G. A., Kuznetsov, N. V., & Mokaev, T. N. (2015). Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. European Physical Journal Special Topics,224, 1421–1458.

    Article  Google Scholar 

  42. Wolf, A., Swift, J. B., Swinney, H. L., & Wastano, J. A. (1985). Determining Lyapunov exponents from time series. Physica D: Nonlinear Phenomena,16, 285–317.

    Article  MathSciNet  MATH  Google Scholar 

  43. Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., & Hu, Y. (2016). Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dynamics,86(3), 1711–1723.

    Article  Google Scholar 

  44. Elsonbaty, A. R., & El-Sayed, A. M. A. (2017). Further nonlinear dynamical analysis of simple jerk system with multiple attractors. Nonlinear Dynamics,83(2), 1169–1186.

    Article  MATH  Google Scholar 

  45. Kengne, J., Njitacke, Z. T., Kamdoum Tamba, V., & Nguomkam Negou, A. (2015). Periodicity, chaos and multiple attractors in a memristor-based Shinriki’s circuit. Chaos: An Interdisciplinary Journal of Nonlinear Science,25, 103126.

    Article  MathSciNet  MATH  Google Scholar 

  46. Kengne, J. (2017). On the Dynamics of Chua’s oscillator with a smooth cubic nonlinearity: Occurrence of multiple attractors. Nonlinear Dynamics,87(1), 363–375.

    Article  MathSciNet  Google Scholar 

  47. Li, C., & Sprott, J. C. (2014). Coexisting hidden attractors in a 4-D simplified Lorenz system. International Journal of Bifurcation and Chaos,24, 1450034.

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, C., Hu, W., Sprott, J. C., & Wang, X. (2015). Multistability in symmetric chaotic systems. European Physical Journal Special Topics,224, 1493–1506.

    Article  Google Scholar 

  49. Pisarchik, A. N., & Feudel, U. (2014). Control of multistability. Physics Reports,540(4), 167–218.

    Article  MathSciNet  MATH  Google Scholar 

  50. Luo, X., & Small, M. (2007). On a dynamical system with multiple chaotic attractors. International Journal of Bifurcation and Chaos,17(9), 3235–3251.

    Article  MathSciNet  MATH  Google Scholar 

  51. Lai, Q., & Chen, S. (2016). Generating multiple chaotic attractors from Sprott B system. International Journal of Bifurcation and Chaos,26(11), 1650177.

    Article  MathSciNet  MATH  Google Scholar 

  52. Sprott, J. C., Wang, X., & Chen, G. (2013). Coexistence of point, periodic and strange attractors. International Journal of Bifurcation and Chaos,23(5), 1350093.

    Article  MathSciNet  Google Scholar 

  53. Kuznetsov, A. P., Kuznetsov, S. P., Mosekilde, E., & Stankevich, N. V. (2015). Co-existing hidden attractors in a radio-physical oscillator. Journal of Physics A: Mathematical and Theoretical,48, 125101.

    Article  MathSciNet  MATH  Google Scholar 

  54. Leipnik, R. B., & Newton, T. A. (1981). Double strange attractors in rigid body motion with linear feedback control. Physics Letters A,86, 63–87.

    Article  MathSciNet  Google Scholar 

  55. Mezatio, B. A., Tingue Motchongom, M., Wafo Tekam, B. R., Kengne, R., & Fomethe, A. (2019). A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability. Chaos, Solitons and Fractals,120, 100–115.

    Article  MathSciNet  Google Scholar 

  56. Li, C., Sprott, J. C., Akgul, A., Lu, H. C., & Zhao, Y. (2017). A new chaotic oscillator with free control. Chaos,27, 083101.

    Article  MathSciNet  MATH  Google Scholar 

  57. Kingni, S. T., Keuninckx, L., Woafo, P., van der Sande, G., & Danckaert, J. (2013). Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: Theory and electronic implementation. Nonlinear Dynamics,73, 1111–1123.

    Article  MathSciNet  MATH  Google Scholar 

  58. Pham, V.-T., Jafari, S., Volos, C., Giakoumis, A., Vaidyanathan, S., & Kapitaniak, T. (2016). A chaotic system with equilibria located on the rounded square loop and its circuit implementation. IEEE Transactions on Circuits and Systems II: Express Briefs,6(9), 878–882.

    Article  Google Scholar 

  59. Piper, J. R., & Sprott, J. C. (2010). Simple autonomous chaotic circuits. IEEE Transactions on Circuits and Systems II: Express Briefs,57(9), 730–734.

    Article  Google Scholar 

  60. Tchitnga, R., et al. (2016). Chaos in a single op-amp-based jerk circuit: experiments and simulations. IEEE Transactions on Circuits and Systems II: Fundamental Theory and Applications,63(3), 239–243.

    Article  Google Scholar 

  61. Joshi, M., & Ranjan, A. (2019). An autonomous chaotic and hyperchaotic oscillator using OTRA. Analog Integrated Circuits and Signal Processing: An International Journal. https://doi.org/10.1007/s10470-019-01395-0.

    Article  Google Scholar 

  62. Elwakil, A. S., & Soliman, A. M. (1998). Two modified for chaos negative impedance converter Op Amp oscillators with symmetrical and antisymmetrical nonlinearities. International Journal of Bifurcation and Chaos,8(6), 1335–1346.

    Article  MATH  Google Scholar 

  63. Abro, K. A., Memon, A. A., & Memon, A. A. (2019). Functionality of circuit via modern fractional differentiations. Analog Integrated Circuits and Signal Processing: An International Journal,99(1), 11–21. https://doi.org/10.1007/s10470-018-1371-6.

    Article  Google Scholar 

  64. Abro, K. A., Memon, A. A., & Uqaili, M. A. (2018). A comparative mathematical analysis of RL and RC electrical circuits via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. The European Physical Journal Plus,133, 113. https://doi.org/10.1140/epjp/i2018-11953-8.

    Article  Google Scholar 

  65. Abro, K. A., Memon, A. A., Abro, S. H., & Uqaili, M. A. (2019). Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo–Fabrizio fractional operator: An application to solar energy. Energy Reports,5, 41–49. https://doi.org/10.1016/j.egyr.2018.09.009.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers whose criticisms and suggestions have helped to considerably improve the quality and content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Kengne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, L.K., Kengne, J. & Fotsin, H.B. The effects of symmetry breaking on the dynamics of a simple autonomous jerk circuit. Analog Integr Circ Sig Process 101, 489–512 (2019). https://doi.org/10.1007/s10470-019-01514-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01514-x

Keywords

Navigation