Skip to main content
Log in

Parametric fault detection of analog circuits based on Bhattacharyya measure

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a fault detection algorithm to detect parametric fault in linear and weakly non-linear analog circuits by Bhattacharyya measure, a statistical metric. Linear feedback shift register (LFSR) generated pseudo-random bit sequences are fed to digital-to-analog converter (DAC) to obtain random analog input stimuli for the circuit under test (CUT). Bhattacharyya coefficient is measured from the probability density function (PDF) of the output. The non-Gaussian auto-regressive model is used to estimate the PDF. Component tolerance is mapped into statistical space by Monte Carlo simulation. The proposed methodology is validated through three benchmark circuits: continuous-time low pass state variable filter circuit, fourth order low pass Chebyshev filter circuit and cascade amplifier. All the circuits are simulated with CADENCE Virtuoso using UMC-180nm technology. Defect screening is also measured with linear regression analysis. Detectability of the proposed method for parametric fault is reasonably large in comparison to functional test method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Savir, J., & Guo, Z. (2003). Test limitations of parametric faults in analog circuits. IEEE Transactions on Instrumentation and Measurement., 52, 1444–1454.

    Article  Google Scholar 

  2. Kavithamani, A., Manikandan, V., & Devarajan, N. (2013). Soft fault classification of analog circuits using network parameters and neural networks. Journal of Electronic Testing, 29, 237–240.

    Article  Google Scholar 

  3. Slamani, M., & Kaminska, B. (1992). Analog circuit fault diagnosis based on sensitivity computation and functional testing. IEEE Design and Test of Computers, 9, 30–39.

    Article  Google Scholar 

  4. Chin, K. R. (1989). Functional testing of circuits and SMD boards with limited nodal access. In Proceedings. Meeting the tests of time, Washington, DC.

  5. Spaandonk, J. V., & Kevenaar, T. A. M. (1996). Selecting measurements to test the functional behavior of analog circuits. Journal of Electronic Testing, 9, 9–18.

    Article  Google Scholar 

  6. Guo, Z., & Savir, J. (2006). Coefficient-based test of parametric faults in analog circuits. IEEE Transactions on Instrumentation and Measurement, 55, 150–157.

    Article  Google Scholar 

  7. Papakostas, D. K., & Hatzopoulos, A. A. (2008). A unified procedure for fault detection of analog and mixed mode circuits using magnitude and phase components of the power supply current spectrum. IEEE Transactions on Instrumentation and Measurement, 57, 2589–2595.

    Article  Google Scholar 

  8. Bhunia, S., Raychowdhury, A., & Roy, K. (2005). Defect oriented testing of analog circuits using wavelet analysis of dynamic supply current. Journal of Electronic Testing, 21, 147–159.

    Article  Google Scholar 

  9. Halder, A., & Chatterjee, A. (2005). Test generation for specification test of analog circuits using efficient test response observation methods. Microelectronics Journal, 36, 820–832.

    Article  Google Scholar 

  10. Ayari, H., et al. (2012). Making predictive analog/RF alternate test strategy independent of training set size. In IEEE international test conference, Anaheim, CA.

  11. Stratigopoulos, H. G., Mir, S., Acar, E., & Ozev, S. (2010). Defect filter for alternate RF test. In IEEE European test symposium, Praha.

  12. Variyam, P. N., Cherubal, S., & Chatterjee, A. (2002). Prediction of analog performance parameters using fast transient testing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21, 349–361.

    Article  Google Scholar 

  13. Huang, K., Stratigopoulos, H. G., & Mir, S. (2010). Fault diagnosis of analog circuits based on machine learning. In Design, automation & test in Europe conference & exhibition, Dresden.

  14. Stratigopoulos, H. G., & Makris, Y. (2008). Error moderation in low-cost machine-learning-based analog/RF testing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27, 339–351.

    Article  Google Scholar 

  15. Sindia, S., Singh, V., & Agarwal, V. D. (2009). Polynomial coefficient based DC testing of non-linear analog circuits. Massachusetts: GLSVLSI.

    Book  Google Scholar 

  16. Shi, C. J. R., Tian, M. W., & Shi, G. (2006). Efficient DC fault simulation of nonlinear analog circuits: One-step relaxation and adaptive simulation continuation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25, 1392–1400.

    Article  Google Scholar 

  17. Ghosh, K., Roy, A., Mondal, S., & Ray, B. (2011). Parametric deviation based analog test and diagnosis system. Journal of Circuits, Systems and Computers, 20, 1323–1340.

    Article  Google Scholar 

  18. Cui, Y., Shi, J., & Wang, Z. (2016). Analog circuits fault diagnosis using multi-valued Fisher’s fuzzy decision tree (MFFDT). International Journal of Circuit Theory and Applications, 44, 240–260.

    Article  Google Scholar 

  19. Xie, Y., Li, X., Xie, S., Xie, X., & Zhou, Q. (2014). Soft fault diagnosis of analog circuits via frequency response function measurements. Journal of Electronic Testing, 30, 243–249.

    Article  Google Scholar 

  20. Krishnan, S., & Kerkhoff, H. G. (2013). Exploiting multiple Mahalanobis distance metrics to screen outliers from analog product manufacturing test responses. IEEE Design and Test, 30, 18–24.

    Article  Google Scholar 

  21. Li, X., & Xie, Y. (2013). Analog circuits fault detection using cross-entropy approach. Journal of Electronic Testing, 29, 115–120.

    Article  Google Scholar 

  22. Srimani, S., Ghosh, K., & Rahaman, H. (2016). Parametric fault detection in analog circuits: A statistical approach. In Asian test symposium, Hiroshima, Japan.

  23. Kalpana, P., & Gunavathi, K. (2008). Wavelet based fault detection in analog VLSI circuits using neural networks. Applied Soft Computing, 8, 1592–1598.

    Article  Google Scholar 

  24. Al-Qutayri, M. A. (2004). Continuous time analog filter circuits testing using PRBS input vectors. In Electrotechnical conference, MELECON 2004. Proceedings of the 12th IEEE mediterranean, Croatia.

  25. Al-Qutayri, M. A., et al. (1992). Go/no-go testing of analogue macros. In IEEE proceedings G-circuits, devices and systems.

  26. Park, J., Shin, H., & Abraham, J. A. (2011). Pseudorandom test of nonlinear analog and mixed-signal circuits based on a volterra series model. Journal of Electronic Testing, 27, 321.

    Article  Google Scholar 

  27. Pan, C. Y., & Cheng, K. T. (1994). Pseudorandom testing for mixed signal circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16(10), 1173–1185.

    Google Scholar 

  28. Flores, M. G. C., Negreiros, M., Carro, L., & Susin, A. A. (2002). A noise generator for analog-to-digital converter testing. In 5th symposium on integrated circuits and systems design, Brazil.

  29. Kailath, T. (1967). The divergence and Bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology, 15, 52–60.

    Article  Google Scholar 

  30. Kay, S. (1998). Model-based probability density function estimation. IEEE Signal Processing Letters, 51, 318–320.

    Article  Google Scholar 

  31. Sindia, S., Agarwal, V. D., & Singh, V. (2012). Defect level and fault coverage in coefficient based analog circuit testing. Journal of Electronic Testing, 28, 541549.

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by SMDP-C2SD project DeitY, MCIT, India. S. Srimani thankfully acknowledges DeitY, India for his Visvesvaraya fellowship during his Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srimani, S., Parai, M.K., Ghosh, K. et al. Parametric fault detection of analog circuits based on Bhattacharyya measure. Analog Integr Circ Sig Process 93, 477–488 (2017). https://doi.org/10.1007/s10470-017-1052-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1052-x

Keywords

Navigation